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Knowledge Discovery & Data Mining
– Similarity and Distance Measures –

Instructor: Yong Zhuang
yong.zhuang@gvsu.edu

mailto:yong.zhuang@gvsu.edu
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Recall: data cleaning and Integration
● Data Preprocessing: An Overview

○ Data Quality
○ Major Tasks in Data Preprocessing

● Data Cleaning
○ Missing Values, 
○ Noise(Denoising): Binning, Regression, Low-pass filter
○ Outliers, 
○ Data Cleaning as a Process

● Data Integration
○ Schema integration, Entity identification problem, Detect and resolve data value conflicts
○ Handling Redundancy: At the tuple level;  Between attributes
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● Data Transformation

○ Transformation functions 

○ Data normalization

■ Min-max 

■ Z-score 

■ Decimal scaling 

○ Data discretization: Binning, Clustering analysis, Histogram analysis

Recall: data transformation
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● Data compression

○ Discrete wavelet transform (DWT)

● Sampling

○ Sampling without replacement

○ Sampling with replacement

○ Cluster or Stratified Sampling

Recall: data reduction
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● Similarity and distance measures

○ Proximity Measures for

■ Nominal Attributes

■ Binary Attributes

■ Numeric Attributes

■ Ordinal attributes

■ Mixed types

○ Cosine Similarity  

○ Entropy & Cross Entropy

○ Kullback-Leibler divergence

Outline
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● Similarity
○ Numerical measure of how alike two data objects are
○ Value is higher when objects are more alike
○ Often falls in the range [0,1]

● Dissimilarity (e.g., distance)
○ Numerical measure of how different two data objects are
○ Lower when objects are more alike
○ Minimum dissimilarity is often 0
○ Upper limit varies

● Proximity refers to a similarity or dissimilarity

Similarity and distance measures
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Data matrix (or object-by-attribute structure): 
● This structure stores the n data points with p 

dimensions (n objects ×p attributes)
● Two-mode

Dissimilarity matrix (or object-by-object structure): 
● A triangular matrix
● d(i, j) is the measured dissimilarity or “difference” 

between objects i and j
● d(i, j)>=0, close to 0 when objects i and j are 

highly similar or “near” each other, and becomes 
larger the more they differ.

● d(i, j) = d(j, i).
● One-mode

Dissimilarity matrix
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Simple matching 
● Dissimilarity: m: # of matches, p: total # of variables, then dissimilarity between two 

objects i and j can be computed based on the ratio of mismatches

● Similarity: 

Encoding: creating a new binary attribute for each of the M states of a nominal attribute.

Proximity Measures for Nominal Attributes
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Example. Suppose that we have the sample data of following table, so the dissimilarity 
matrix is 

Proximity Measures for Nominal Attributes

Object Identifier Test-1 (nominal)

1 code A

2 code B

3 code C

4 code A
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Example. Suppose that we have the sample data of following table, so the dissimilarity 
matrix is 

Proximity Measures for Nominal Attributes

Object Identifier Test-1 (nominal)

1 code A

2 code B

3 code C

4 code A

Only one nominal attribute, so p = 1
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Example. Suppose that we have the sample data of following table, so the dissimilarity 
matrix is 

Proximity Measures for Nominal Attributes

Object Identifier Test-1 (nominal)

1 code A

2 code B

3 code C

4 code A
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If all binary attributes are thought of as having the same weight, we have the 2×2 contingency 
table, where q is the number of attributes that equal 1 for both objects i and j , r is the number 
of attributes that equal 1 for object i but equal 0 for object j , s is the number of attributes that 
equal 0 for object i but equal 1 for object j , and t is the number of attributes that equal 0 for 
both objects i and j . The total number of attributes is p, where p = q +r +s +t .

Proximity Measures for Binary Attributes

1 0 Sum 
(row)

1 q r q+r
0 s t s+t
Sum(col.) q+s r+t p

contingency table

Object j

Object i
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Symmetric binary attributes: symmetric binary dissimilarity

Asymmetric binary attributes: 
● the two states are not equally important,
● the agreement of two 1s (a positive match) is then considered more significant than 

that of two 0s (a negative match).
● asymmetric binary dissimilarity 

● asymmetric binary similarity: 
○ is called the Jaccard coefficient

Proximity Measures for Binary Attributes

1 0 Sum 
(row)

1 q r q+r
0 s t s+t
Sum(col.) q+s r+t p

contingency table

Object j

Object i
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Example. Suppose that we have the sample data of following table, so the distance 
between each pair of the three patients—Jack, Mary, and Jim—is

● d(Jack, Jim) =

● d(Jack, Mary) =

● d(Jim, Mary) =

Proximity Measures for Binary Attributes

1 0 Sum 
(row)

1 q r q+r
0 s t s+t
Sum(col.) q+s r+t p

contingency table

Object j

Object i
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Example. Suppose that we have the sample data of following table, so the distance 
between each pair of the three patients—Jack, Mary, and Jim—is

Proximity Measures for Binary Attributes

1 0 Sum 
(row)

1 q r q+r
0 s t s+t
Sum(col.) q+s r+t p

contingency table

Object j

Object i
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Dissimilarity of numeric data: Minkowski distance
Distance measures are commonly used for computing the dissimilarity of objects 
described by numeric attributes.

● Euclidean distance: The most popular distance measure
○ Let i = (xi1, xi2, . . . , xip) and j = (xj1, xj2, . . . , xjp) be two objects described 

by p numeric attributes.
○ The Euclidean distance between objects i and j is defined as

● Manhattan (or city block) distance:  
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Dissimilarity of numeric data: Minkowski distance
Both the Euclidean and the Manhattan distance satisfy the following mathematical 

properties:

● Nonnegativity: d(i, j) ≥ 0: Distance is a nonnegative number.

● Identity of indiscernibles: d(i, i) = 0: The distance of an object to itself is 0.

● Symmetry: d(i, j) = d(j, i): Distance is a symmetric function.

● Triangle inequality: d(i, j) ≤ d(i, k)+d(k, j): Going directly from object i to object j 

in space is no more than making a detour over any other object k.

A measure that satisfies these conditions is known as metric.
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Dissimilarity of numeric data: Minkowski distance
● Minkowski distance: is a generalization of the Euclidean and Manhattan 

distances. It is defined as

○ where h is a real number such that h ≥ 1
■ Manhattan distance when h = 1 (L1 norm)
■ Euclidean distance when h = 2 (L2 norm)

● Supremum distance (Lmax, L∞ norm, and the Chebyshev distance): a 
generalization of the Minkowski distance for h→∞
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Dissimilarity of numeric data: Minkowski distance
Example. Let x1 = (1, 2) and x2 = (3, 5) represent two objects as shown

● Euclidean distance: 

● Manhattan distance:  

● Supremum distance:
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Dissimilarity of numeric data: Minkowski distance
Example. Let x1 = (1, 2) and x2 = (3, 5) represent two objects as shown
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Proximity measures for ordinal attributes
The values of an ordinal attribute have a meaningful order or ranking about them. e.g. 
drink_size = {small, medium, large}
Suppose that f is an ordinal attribute and has Mf ordered states. Let 1, . . . , Mf 

represent ranking of these ordered states. The dissimilarity of f can be calculated by:

1.Normalize the rank rif of the object i and attribute f by

2.Compute the dissimilarity using distance methods
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Proximity measures for ordinal attributes
Example. Suppose that we have the sample data shown as follows. use the Euclidean 
distance, the dissimilarity matrix is?

Object Identifier Test-2 (ordinal)

1 excellent

2 fair

3 good

4 excellent
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Proximity measures for ordinal attributes
Example. Suppose that we have the sample data shown as follows. use the Euclidean 
distance, the dissimilarity matrix is?

z1f = 

z2f = 

z3f = 

z4f = Object Identifier Test-2 (ordinal)

1 excellent

2 fair

3 good

4 excellent
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Proximity measures for ordinal attributes
Example. Suppose that we have the sample data shown as follows. use the Euclidean 
distance, the dissimilarity matrix is?

Mf = 3,   [fair, good, excellent] = [1,2,3]

z1f = 1

z2f = 0

z3f = 0.5

z4f = 1

Object Identifier Test-2 (ordinal)

1 excellent

2 fair

3 good

4 excellent
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Proximity measures for ordinal attributes
Example. Suppose that we have the sample data shown as follows. use the Euclidean 
distance, the dissimilarity matrix is?

Mf = 3,   [fair, good, excellent] = [1,2,3]

z1f = 1

z2f = 0

z3f = 0.5

z4f = 1

Object Identifier Test-2 (ordinal)

1 excellent

2 fair

3 good

4 excellent
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Dissimilarity for attributes of mixed types
A database may contain all attribute types 

● Nominal, symmetric binary, asymmetric binary, numeric, ordinal

Suppose that the data set contains p attributes of mixed types. The dissimilarity d(i, j) 

between objects i and j is defined as

where the indicator δij
(f) = 0 if 

1. xif or xjf is missing (i.e., there is no measurement of attribute f for object i or 

object j ), 

2. xif = xjf = 0 and attribute f is asymmetric binary; 

3. otherwise, δij
(f) =1.
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Dissimilarity for attributes of mixed types
The contribution of attribute f to the dissimilarity between i and j (i.e., dij

(f) ) is 

computed dependent on its type:
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Dissimilarity for attributes of mixed types
Example. compute a dissimilarity matrix for the objects in following table

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3 (numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28
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Dissimilarity for attributes of mixed types
Example. compute a dissimilarity matrix for the objects in following table

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3(numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28

dij
(1) =
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Dissimilarity for attributes of mixed types
Example. compute a dissimilarity matrix for the objects in following table

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3(numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28

dij
(1) = dij

(2) =
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Dissimilarity for attributes of mixed types
Example. compute a dissimilarity matrix for the objects in following table

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3(numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28

dij
(3) =dij

(1) = dij
(2) =
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Dissimilarity for attributes of mixed types
Example. compute a dissimilarity matrix for the objects in following table

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3(numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28

dij
(3) =dij

(1) = dij
(2) =

δij
(f) = 1,                                                                0.65
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Dissimilarity for attributes of mixed types
Example. compute a dissimilarity matrix for the objects in following table

Object Identifier Test-1 (nominal) Test-2 (ordinal) Test-3(numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28

d(i, j) =                                                  
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Cosine Similarity
Cosine similarity: measures the similarity between two vectors of an inner product space. 
It is measured by the cosine of the angle between two vectors and determines whether 
two vectors are pointing in roughly the same direction.
● Often used to measure document similarity in text analysis.
● A document can be represented by thousands of attributes, each recording the 

frequency of a particular word (such as keywords) or phrase in the document. Thus 
each document is an object represented by what is called a term-frequency vector.

Let x and y be two term-frequency vectors for comparison. Using the cosine measure as a 
similarity function, we have

||y|| is the Euclidean norm of vector y
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Cosine Similarity
Example. Suppose that x and y are the first two term-frequency vectors in the following 
table, That is, x = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) and y = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1). 

How similar are x and y?

Document Team Coach Hockey  Baseball Soccer Penalty Score Win Loss Season

1 5 0 3 0 2 0 0 2 0 0
2 3 0 2 0 1 1 0 1 0 1

3 0 7 0 2 1 0 0 3 0 0

4 0 1 0 0 1 2 2 0 3 0

Document vector or term-frequency vector.
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Cosine Similarity
Example. Suppose that x and y are the first two term-frequency vectors in the following 
table, That is, x = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) and y = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1). 

How similar are x and y?
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Cosine Similarity
Example. Suppose that x and y are the first two term-frequency vectors in the following 
table, That is, x = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) and y = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1). 

How similar are x and y?

sim(x, y) = 0.94
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Information Theory

Claude Elwood Shannon was an 
American mathematician, electrical 
engineer, computer scientist and 
cryptographer known as the "father of 
information theory" and as the 
"father of the Information Age". … 
and was one of the founding fathers 
of artificial intelligence. 

The Mathematical Theory of Communication (1948)

https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content
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Information Theory & Entropy 
Goal: is to reliable and efficiently transmit a message from a sender to a recipient.
In digital age, message are composed of bits. Bit = 0 or 1,  when we communicate a 
message, we want as much useful information as possible to get through.
What is Entropy?
● Entropy measures the uncertainty in a probability distribution.
● It quantifies the average amount of information you gain from observing an outcome.
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Entropy 
Example: Consider rolling a fair eight-sided die where each face (1-8) is equally 
likely. Each outcome has a probability of 1/8 . so the entropy is ___ ?
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Entropy 
Example: Consider rolling a fair eight-sided die where each face (1-8) is equally 
likely. Each outcome has a probability of 1/8 . so the entropy is ___ ?

This means, on average, you get 3 bits of information per roll.
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Entropy in Biased Dice 
Example: Now consider a biased eight-sided die where:

● P(1)=P(2)=0.35
● P(3)=P(4)=0.1
● P(5)=P(6)=0.04
● P(7)=P(8)=0.01

so the entropy is ___ ?
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Entropy in Biased Dice 
Example: Now consider a biased eight-sided die where:

● P(1)=P(2)=0.35
● P(3)=P(4)=0.1
● P(5)=P(6)=0.04
● P(7)=P(8)=0.01

so the entropy is ___ ?

This means, on average, you get 2.226 bits of information per roll.
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Entropy in Biased Dice 
Example: Now consider a biased eight-sided die where:

● P(1)=P(2)=0.35
● P(3)=P(4)=0.1
● P(5)=P(6)=0.04
● P(7)=P(8)=0.01

so the entropy is ___ ?

This means, on average, you get 2.226 bits of information per roll.

1,     2,     3,     4,     5,       6,       7,        8

000, 001, 010, 011, 100  , 101  , 110   , 111

00  , 01  , 100, 101, 1100, 1101, 11100, 11101

3 bits

0.35*2*2 + 0.1*3*2 + 0.04*4*2 + 0.01*5*2 = 2.42 bits
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Entropy in Biased Dice 
Example: Now consider a biased eight-sided die where:

● P(1)=P(2)=0.35 0.01
● P(3)=P(4)=0.1
● P(5)=P(6)=0.04
● P(7)=P(8)=0.01 0.35

H(x) = 2.226

1,     2,     3,     4,     5,       6,       7,        8

000, 001, 010, 011, 100  , 101  , 110   , 111

00  , 01  , 100, 101, 1100, 1101, 11100, 11101

3 bits

0.350.01*2*2 + 0.1*3*2 + 0.04*4*2 + 0.010.35*5*2 = 4.46 bits
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Cross-Entropy and Message Encoding
What is Cross-Entropy?
● Cross-Entropy measures the average number of bits required to transmit outcomes 

from a distribution 𝑝 (true) when using a code based on distribution 𝑞(predicted).

1,     2,     3,     4,     5,       6,       7,        8

00  , 01  , 100, 101, 1100, 1101, 11100, 11101
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Cross-Entropy and Message Encoding
What is Cross-Entropy?
● Cross-Entropy measures the average number of bits required to transmit outcomes 

from a distribution 𝑝 (true) when using a code based on distribution 𝑞(predicted).

● It also measures the difference between the true probability distribution 𝑝 and the 
predicted distribution 𝑞, quantifying how well the predicted distribution approximates the 
true one.

● If 𝑝 = 𝑞, the cross-entropy will be equal to the entropy of 𝑝. If 𝑝 and 𝑞 differ, the 
cross-entropy will be greater than the entropy of 𝑝, the difference between 𝑝 and 𝑞 is the 
KL Divergence.
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Kullback-Leibler divergence(the KL divergence): a measure that has been popularly 
used in the data mining literature to measure the difference between two probability 
distributions over the same variable x.
● closely related to relative entropy, information divergence, and information for 

discrimination
● is a nonsymmetric measure of the difference between two probability distributions 𝑝

(x) and 𝑞(x)
● the KL divergence of 𝑞(x) from 𝑝(x), denoted DKL(𝑝(x)||𝑞(x)), is a measure of the 

information loss when 𝑞(x) is used to approximate 𝑝(x).

Kullback-Leibler divergence
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Let 𝑝(x) and 𝑞(x) be two probability distributions of a discrete random variable x. That is, 
both 𝑝(x) and 𝑞(x) sum up to 1, and 𝑝(x) > 0 and 𝑞(x)>0 for any x in X. DKL(𝑝(x)||𝑞(x)) is 
defined as

Typically 𝑝(x) represents the “true” distribution of data. The measure 𝑞(x) typically 
represents a theory, model, description, or approximation of 𝑝(x).
● it is not a distance measure, because it is not a metric measure.
● It is not symmetric: the KL from 𝑝(x) to 𝑞(x) is generally not the same as the KL from 𝑞

(x) to 𝑝(x).
● DKL(𝑝(x)||𝑞(x)) is a nonnegative measure. DKL(𝑝(x)||𝑞(x)) ≥ 0,

○ DKL(𝑝(x)||𝑞(x)) = 0 if and only if 𝑝(x) = 𝑞(x)

Kullback-Leibler divergence
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Example. Suppose there are two sample distributions P and Q as follows: P : (a : 3/5, b : 
1/5, c : 1/5) and Q: (a : 5/9, b : 3/9, d : 1/9). Compute the KL divergence DKL(P ||Q)

Kullback-Leibler divergence
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Example. Suppose there are two sample distributions P and Q as follows: P : (a : 3/5, b : 
1/5, c : 1/5) and Q: (a : 5/9, b : 3/9, d : 1/9). Compute the KL divergence DKL(P ||Q)

Kullback-Leibler divergence

No sample d in P, and no sample c in Q?
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Example. Suppose there are two sample distributions P and Q as follows: P : (a : 3/5, b : 
1/5, c : 1/5) and Q: (a : 5/9, b : 3/9, d : 1/9). Compute the KL divergence DKL(P ||Q)

● Introduce a small constant e  = 0.001, 
● smoothing: the missing symbols can be added to each distribution accordingly, with 

the small probability e.
○ P’ : (a : 3/5 − e/3, b : 1/5 − e/3, c : 1/5 − e/3, d : e)
○ Q’ : (a : 5/9 − e/3, b : 3/9 − e/3, c : e, d : 1/9 − e/3)

DKL(P’,Q’) can be calculated.

Kullback-Leibler divergence: smoothing
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Summary

● Similarity and distance measures
○ Proximity Measures for

■ Nominal Attributes
■ Binary Attributes
■ Numeric Attributes
■ Ordinal attributes
■ Mixed types

○ Cosine Similarity  
○ Entropy & Cross Entropy
○ Kullback-Leibler divergence


