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Knowledge Discovery & Data Mining
– Data Preprocessing  –

Dimensionality Reduction: Feature Extraction

Instructor: Yong Zhuang
yong.zhuang@gvsu.edu

mailto:yong.zhuang@gvsu.edu
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● Dimension Reduction

○ Curse of Dimensionality

○ Feature extraction

■ Principal components analysis(PCA)  

■ Kernel PCA  

■ Stochastic neighbor embedding(SNE)

Outline
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Dimensionality:  refers to the number of features or attributes within a dataset.

Curse of Dimensionality

When the number of features 
significantly exceeds the number of 
observations, many algorithms can 
struggle to effectively train models. 
This is called the “Curse of 
Dimensionality,” and it especially 
impacts data mining algorithms that 
depend on distance calculations, as it 
can hinder the effective training of 
models.

● Randomly generate 500 points in a unit box.
● Compute difference between max and min distance between any pair of points
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Curse of Dimensionality

How to Solve the Curse 
of Dimensionality?

Dimension Reduction
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Dimension Reduction

Dimension Reduction:  It's a process that reduces the number of random variables under 
consideration by obtaining a set of principal variables that retain  the most important 
information in the data while discarding the redundant or less important features. 

Feature selection: Selects a subset of the 
most relevant features for model 
construction.
● Method: Filter methods, wrapper 

methods, embedded methods.
● Advantages: Enhances model 

interpretability, discards irrelevant or 
redundant features.

Feature extraction: Transforms data into a 
set of new features.
● Method: PCA, Kernel PCA, Stochastic 

neighbor embedding, Autoencoders, ….
● Advantages: The newly derived features 

can capture essential information in fewer 
dimensions.
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Feature Extraction: PCA
Principal Component Analysis (PCA) is a statistical procedure that uses an orthogonal 
transformation that converts a set of correlated variables to a set of uncorrelated variables. It 
is a method to find the linear combination that accounts for as much variability as possible.

 

● Reduce the dimensionality

● Simplify the analysis while retaining 

most of the important information.

● Commonly used in many fields 

including biology, finance, and image 

processing.

source: https://www.geeksforgeeks.org/principal-component-analysis-pca/ 



   Yong Zhuang Knowledge Discovery & Data Mining 7

Why Combine Variables?
● Combining variables can help to simplify the analysis.
● For example, you may want to predict a variable (e.g., performance score) based on 

several features (e.g., study hours, number of completed assignments).
● Combining variables into a single representative variable reduces complexity and can help 

avoid multicollinearity.
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Why Use PCA?
● Dimensionality Reduction: PCA reduces the number of variables while retaining as much 

information as possible.
● Multicollinearity: PCA helps mitigate multicollinearity by combining correlated variables.
● Interpretation: Simplified datasets are easier to interpret and visualize.
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Combine Variables
Example. We have measurements of study hours and number of completed assignments for 
a group of students, and we wish to predict the students' exam performance.
● Study Hours (SH) and Assignments Completed (AC) are highly correlated.
● To simplify the prediction model, we can combine these two variables into a single variable, 

Study Index (SI).

Where 𝛼1  and 𝛼2  are weights. and 𝛼1
2 + 𝛼2

2 = 1

Student Study Hours (SH) Assignments Completed (AC) Study Index (SI)

1 10 4
2 8 6
3 12 5
4 7 3
5 9 4



   Yong Zhuang Knowledge Discovery & Data Mining 10

Combine Variables
Example. We have measurements of study hours and number of completed assignments for 
a group of students, and we wish to predict the students' exam performance.
● Study Hours (SH) and Assignments Completed (AC) are highly correlated.
● To simplify the prediction model, we can combine these two variables into a single variable, 

Study Index (SI).
Where 𝛼1  and 𝛼2  are weights. and 𝛼1

2 + 𝛼2
2 = 1

Student Study Hours (SH) Assignments Completed (AC) Study Index (SI) 𝛼 1   =0.8 and 𝛼 2 = 0.6 

1 10 4 10.4
2 8 6 10
3 12 5 12.6
4 7 3 7.4
5 9 4 9.6

3.46
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Combine Variables
Example. We have measurements of study hours and number of completed assignments for 
a group of students, and we wish to predict the students' exam performance.
● Study Hours (SH) and Assignments Completed (AC) are highly correlated.
● To simplify the prediction model, we can combine these two variables into a single variable, 

Study Index (SI).
Where 𝛼1  and 𝛼2  are weights. and 𝛼1

2 + 𝛼2
2 = 1

𝛼 1 𝛼 2 VarSI

0.8 0.6 3.46
0.6 0.8 2.788
0.98 0.2 3.86
0.2 0.98 1.65

We can see the variance as information, then maximize the variance = keep as 
much information as possible in the combined variable. 
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How does PCA find the optimal weights?

Center the 
Data 

(Normalization)

Covariance 
Matrix 

Computation

Eigenvalues 
and 

Eigenvectors

Selection 
Principal 

Components

Data 
Transformation
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Center the Data(Normalization)

Student SH AC

1 10 4
2 8 6
3 12 5
4 7 3
5 9 4

Student Z-Score
SH

Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392
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Calculate the Covariance Matrix
Student Z-Score

SH
Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392

Z-Score
SH

Z-Score
AC

Z-Score
SH 1.25 0.37

Z-Score
AC 0.37 1.25
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Calculate the Eigenvalues of the Covariance Matrix

Student Z-Score
SH

Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392

Z-Score
SH

Z-Score
AC

Z-Score
SH 1.25 0.37

Z-Score
AC 0.37 1.25
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Calculate the Eigenvectors of the Covariance Matrix

Student Z-Score
SH

Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392

Z-Score
SH

Z-Score
AC

Z-Score
SH 1.25 0.37

Z-Score
AC 0.37 1.25
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Calculate the Eigenvectors of the Covariance Matrix

Student Z-Score
SH

Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392

Z-Score
SH

Z-Score
AC

Z-Score
SH 1.25 0.37

Z-Score
AC 0.37 1.25

[0.707,0.707]
normalization
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Calculate the Eigenvectors of the Covariance Matrix

Student Z-Score
SH

Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392

Z-Score
SH

Z-Score
AC

Z-Score
SH 1.25 0.37

Z-Score
AC 0.37 1.25
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Calculate the Principal Components

Student Z-Score
SH

Z-Score
AC

1 0.465 -0.392
2 -0.697 1.569
3 1.627 0.588
4 -1.279 -1.373
5 -0.116 -0.392

.

PC1         PC2
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Nonlinear Feature Extraction Methods

PCA is a linear method for dimensionality reduction in that each principal component is a 
linear combination of the original input attributes. This works well if the input data 
approximately follows a Gaussian distribution or forms a few linearly separable clusters. 
When the input data are linearly inseparable, PCA becomes ineffective. 

Nonlinear Feature Extraction Methods
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Two steps. 

1. Constructing proximity matrix: we construct an n×n proximity matrix P whose 

entry P(i,j) (i,j = 1, ..., n) indicates the affinity or relevance between the two 

corresponding data tuples xi and xj . 

2. Preserving proximity: we learn the new, low-dimensional representations of the 

input data tuples in the k-dimensional  space      (i = 1, ..., n) so that the proximity 

matrix P constructed in the first step is somewhat preserved.

Nonlinear Feature Extraction: General procedure
Suppose there are n data tuples xi, (i = 1, ..., n), each of which is represented by a 
d-dimensional attribute vector.

How can we reduce the dimensionality to k where k << d?
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Kernel PCA
1. we use a kernel function κ(·) to construct the proximity matrix, called kernel matrix.

a. a kernel function computes the similarity of a pair of input data tuples in some 
high-dimensional, often nonlinear, space.

2. we estimate proximity (i.e., similarity) in low-dimensional space based on the learned 
low dimensional representations:                                                         where · is the 
vector inner product.

minimize

Frobenius norm
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Kernel PCA
Typical choices for the kernel functions

● polynomial kernel:

● radial basis function (RBF):

● linear kernel:                                                                      KPCA = PCA                                            
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Stochastic neighbor embedding(SNE)
1. we first construct the proximity matrix P as follows:

a. P(i,j): the probability that data tuple xj is the neighbor of data tuple xi
b. the closer the two data tuples are (i.e., smaller dij ), the more likely xj is the 

neighbor of xi
2. We estimate proximity matrix in low-dimensional space in the similar way:
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Stochastic neighbor embedding(SNE)

                                                                                           that tells the probability that 
each data tuple is the neighbor of a give data tuple.
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Stochastic neighbor embedding(SNE)
                                                                                            that tells the probability that each 
data tuple is the neighbor of a give data tuple.

KL divergences

A variant of SNE named t-SNE (t-distributed stochastic neighbor embedding) has been 
widely used to project the multi-dimensional representation produced by various deep 
learning models.     Artworks tSNE map

https://experiments.withgoogle.com/t-sne-map
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Nonlinear dimensionality reduction methods
Example. Given a collection of data tuples in 
2-D space. The input data naturally form two 
clusters: one crescent shape facing up and one 
facing down. These two clusters are entangled 
with each other, and there is no way we can find 
a linear subspace (a linear line in this case) to 
separate them from each other. This means that 
no matter what kind of line we choose from the 
input space, if we project the original data tuples 
onto this line, the projected portions (i.e., the 
low-dimensional representation) will always be 
mixed with each other. 
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Nonlinear dimensionality reduction methods
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Summary

● Dimension Reduction

○ Curse of Dimensionality

○ Feature extraction

■ Principal components analysis(PCA)  

■ Kernel PCA  

■ Stochastic neighbor embedding(SNE)

● Sample Code

https://gvsu-cis635.github.io/samples/feature_extraction.html

