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What is Linear Regression?

Linear regression is a statistical technique to predict a continuous target variable using one or more

independent variables.
Examples:
e Predicting house prices based on the living area

e Estimating income based on education, major, and GPA, efc.
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Linear regression

Problem Setup:

e Suppose we have n tuples, each represented by p attributes z; = (z; 1, . .. ,:I:,',,,)T and a

continuous output value y; (forz = 1,...,n).

In linear regression, we aim to learn a linear function that maps the p input attributes x; to the

output variable ;:

p
gz’ — wTa:z- t b= Z wj:cz-,j + b
]

where:
e ;: Predicted output for the z-th sample.
e w = (wy,... ,wp)T: Weight vector representing the importance of each input attribute.

e b: Bias term, representing the baseline offset of the prediction.
Model Interpretation:

e Each weight w; indicates the influence of the corresponding attribute ; ; on predicting ¥;.

e Linear regression assumes a linear relationship between inputs and output, with weights

summing the contributions of each attribute, offset by b.
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Determining the Optimal Weights and Bias

Objective: To learn the “best” weight vector w and bias scalar b from the training data. This allows

the linear regression model to make the best possible predictions, where the predicted value ;

w?lx; + bis as close as possible to the observed value y; (fori = 1,...,n).

Method: Least Squares Regression

e Goal: Minimize the sum of squared differences between the predicted and observed values.

e Loss Function:

n n

L(w,b) =) (i —§:)° =) (% — (w'z; + b))’

i=1 i=1
The best weight vector w and bias scalar b are those that minimize L(w, b),

representing the total squared error.

Special Case: Single Input Attribute (p = 1)
e Optimal Weight:

Yo zilyi—=1)
T T 2
Zil_l z; — ,_ll (2;_1 z;)

)=

e Optimal Bias:

1 n
=15 e
i=1

s L . . .
where y = % Z;_l y; I1s the average observed output value across all n training samples.

Yong Zhuang

Knowledge Discovery & Data Mining )




Example of Least Squares Regression

Example. we have four training tuples, each represented by a single attribute x; and an output

variable y;. We want to find the least squares regression model y = wx +} b that best predicts the

-
output y based on the input attribute . §.
n g
m--ﬂﬂll W= sl ) y ¥i=2x+3
Attribute (x;) il i=1% = (Z’ i)
Output (y;) 4 10 14 16 b= Zz—l(\l — WXi )

(a) Training tuples

F=(+y2+ys+ya)/d=@A+10+14+16)/4=11 Ll

Y i x2=12+32+52+7>=84
ol lm F)=1(4—11)+3(10— 11) +5(14 — 11) + 7(16 — 11) =40

(b) Least square regression

n

xX;i(vi—V) 40 4 s o | o | P |
W = (=1 — 9 D i1 i—wx;)  (4—2x1)+(10-2x3)+(14—2x5)4+(16—2x7)
Zl ] \;-__(Zl 6 )2 — 84—64 — b = 1 — 7 — 3
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Perceptron: Modifying Linear Regression for Classification

Suppose We have a binary classification task with:
e y; = +1:Indicates a positive outcome (e.g., buy computer)

e y; = 0:Indicates a negative outcome (e.g., not buy computer)

Modification Approach:
To modify linear regression for classification, we use the sign of the output from the linear regression

model as the predicted class label.

1. Prediction Formula:

Introduce a dummy attribute with a constant value of

T
i) *"" 1 for all tuples to allow a bias term (b) in the model.

y; = sign(w

e Where y; is the predicted class label for the i-th tuple.
e sign(z) = 1if z > 0 (positive class) and sign(z) = 0 otherwise (negative class).
2. Linear Combination:

e We compute a weighted combination of the input attributes:

Zz = ’wTSEi

e |[f 2 is positive, the tuple is classified as a positive case; otherwise, it is classified as negative.
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Perceptron: Modifying Linear Regression for Classification

How can we find the Training Algorithm:

OPT'mal We'ghT V€.C'|:OI" W 1. Initialize Weight Vector:

from a set of training

Tuples? e Start with an initial guess for the weight vector w (e.g., set w = 0).

2. lterative Update Process:

e Continue updating until convergence or a maximum number of iterations is reached:

e For each training tuple x;:

e |f Prediction is Correct: No change to w.

The perceptron algorithm iteratively adjusts the
weight vector based on errors in predictions,
gradually converging towards a solution.

e |f Prediction is Incorrect:
e Positive Tuple (+1):
Update w <— w + nz;

e Negative Tuple (—1):
Update w < w — nx;

e Here, 1 is the learning rate, controlling the size of each update.
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Perceptron: linear regression to classification

(a) current weight vector w (b) updated weight vector w
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Logistic Regression: Sigmoid Function

How can we make a linear classifier not only predict which class label a tuple has but also tell how
confident it is in making such a prediction?

Solution: Logistic regression provides a probabilistic framework for classification by leveraging the

sigmold function to produce confidence scores.

Sigmoid Function: The sigmoid function, denoted as o(2), maps any real-valued number into the

interval (0,1), which can be interpreted as a probability. Sigmoid Function
|
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Logistic regression: Determining the Optimal Weights

How can we find the optimal weight vector w from a set of training
tuples?

maximum likelihood estimation (MLE).

Assume there are n training tuples (z;,y;) fori = 1,...,n.

e Each true class label y; for the i-th tuple is a binary variable, where y; € {0, 1}.

* The probability of correct classification for a tuple is given by: The likelihood function L(w) is the product of probabilities for each training tuple:

P =y)=pf(1—pi) " L(w) = ﬁp"‘-’f(l ~pp)" ¥
1=1

where p; is the probability of class 1 for the 2-th tuple. "
Substituting p; = 1i'l;u-;f:- , we get:

n 5 sl ; Yi 1 1—y;
L(w) = , :

Optimal Model Parameter

The optimal weight vector w* maximizes the log-likelihood function I(w) = log L(w):

w* = arg max l(w) = arg max (Z Yi :clTw - lOg(]_ + ewT;r;))
| i=1
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Summary

e Linear Regression
e Perceptron

e Logistic Regression
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