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Recall: Analyzing Feature Relationships

e Analyzing Feature Relationships

o Introduction to Feature Analysis

o Covariance (for numerical features)

o Correlation Coefficient (for numerical features)

o Spearman's Rank Correlation (Numeric & Ordinal Data)

o Chi-Square Test (for categorical features)

o Partial correlation
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Kullback—-Leibler (KL) divergence

Also called relative
entropy.
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Mutual Information

Formally, the mutual information! of two
discrete random variables X and } can be

defined as:

)= St (28

yeY zeX

where p(x, y) is the joint probability
function of X and ¥, and p(z) and p(y) are
the marginal probability distribution

functions of X and V respectively.
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Mutual Information

Mutual information can be equivalently expressed as
I(X;Y)— H(X) — H(X]Y)
H(Y) — H(Y|X)
H(X)+H(Y) - H(X,Y)
H(X,Y) - H(X|Y) — H(Y|X)
where H(X) and H(Y) are the marginal entropies, H (X} and H (}V|X) are

the conditional entropies, and H (X, J) is the joint entropy of X and Y.
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Mutual Information

Diagram showing additive and subtractive relationships for various information
measures associated with correlated variables X and Y. The area contained by both
circles is the joint entropy H(X,Y). The circle on the left (red and violet) is the individual
entropy H(X), with the red being the conditional entropy H(X|Y). The circle on the
right (blue and violet) is H(Y), with the blue being H(Y|X). The violet is the mutual

information I(X;Y).
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Mutual Information

Mutual information can also be expressed as a Kullback —Leibler divergence
of the product of the marginal distributions, p(x) X p(y), of the two

. - > . b . , . . .
random variables X and FV, from the random variables s joint distribution,

p (-Y) ,.V) .

I(X;Y) = Dxi(p(z,y)||p(z)p(y))-
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Conditional Mutual Information

Definition The conditional mutual information of random variables X
and Y given Z 1s defined by

1(X:Y|Z)=H(X|Z)— H(X|Y, Z) (2.60)
p(X,Y|Z)
= Ep(r.y.p) log ——————. (2.61)
p(X|Z)p(Y|Z)
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Pairwise Nonlinear correlation

In statistics, the maximal information coefficient (MIC) is a measure of the
strength of the linear or nonlinear association between two variables X and Y.
--- Wikipedia entry
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Maximal Information Coefficient (MIC)

Definition Let D be a set of ordered pairs. For a grid G, let D|s; denote the probability
distribution induced by the data D on the cells of G, and let I(—) denote mutual information.
Let I*(D,x,y) = maxqg I(D|q), where the maximum is taken over all z-by-y grids G (possibly
with empty rows/columns). MIC is defined as

I*(D. x.
MIC(D) = max ( .,a:,y)
ry<B(|D|) logs min{z, y}

Where B is a growing function satisfying B(n) = o(n).
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Fig. 1. Computing MIC (A) For each pair (x,y), the
MIC algorithm finds the x-by-y grid with the highest
induced mutual information. (B) The algorithm
normalizes the mutual information scores and
compiles a matrix that stores, for each resolution,
the best grid at that resolution and its normalized
score. (C) The normalized scores form the char-
acteristic matrix, which can be visualized as a sur-
face; MIC corresponds to the highest point on this
surface. In this example, there are many grids that
achieve the highest score. The star in (B) marks a
sample grid achieving this score, and the star in (C)
marks that grid’s corresponding location on the
surface.

Knowledge Discovery & Data Mining

11



A

Mutual Information

CorGC

(Principal

Maximal

Relationship Type  MIC Pearson Spearman  “pg)  (Kraskov) cume poeed) Correlation
Random 0.18 -0.02 -0.02 0.01 0.03 0.19 0.01
Linear
Cubic 0.61 0.69 3.09 312 098
Exponential 0.70 - 2.09 3.62 . 0.94
(Fjjgr“,f’e‘;fi'y) -0.09 -0.09 0.01 011 036
Categorical 0.53 0.49 2.22 1.65
Periodic/Linear 0.33 0.31 0.69 0.45 0.49 0.91
Parabolic -0.01 -0.01 3.33 3.15
oo pysoidal 0.00 0.00 0.01 0.20 0.40 0.80
Sinusoidal 041 -0.11 0.02 0.06 0.38 0.76
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CorGC (Principal Curve-Based)
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Mutual Information (Kraskov et al.)
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G Maximal Information Coefficient (MIC)
0.80 0.65 0.50 0.35

Relationship Type —eeee - Alded NoOise@ ———————>

Two Lines

Line and Parabola

Ellipse

Sinusoid
(Mixture of two signals)

Non-coexistence
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Normalized Score

Normalized Score

Normalized Scoré
Norma\'lzed Score

Fig. 3. Visualizations of the characteristic matrices of common relation-

ships. (A to F) Surfaces representing the characteristic matrices of several
common relationship types. For each surface, the x axis represents num-

ber of vertical axis bins (rows), the y axis represents number of horizontal
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Normalized Score

Nommalized Score

axis bins (columns), and the z axis represents the normalized score of the
best-performing grid with those dimensions. The inset plots show the rela-

tionships used to generate each surface. For surfaces of additional relation-
ships, see fig. S7.
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MIC
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Limitation of MIC

Consider a toy data set with three dimensions {A, B, C}. MIC can
find two separate ways to discretize B to maximize its correlation
with A and C, but it cannot find a discretization of B such that the
correlation with regard to both A and C is maximized. Thus, MIC
IS not suited for calculating correlations over more than two

dimensions. Further, adapting existing solutions to the
multivariate setting is nontrivial due to the huge search space.
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Reference

e Detecting Novel Associations in Large Data Sets

e Multivariate Maximal Correlation Analysis
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