Knowledge Discovery & Data Mining — Data Preprocessing — Data Cleaning & Data Integration

Instructor: Yong Zhuang

<u>yong.zhuang@gvsu.edu</u>

Yong Zhuang

Based on the original version by Professor Jiliang Tang

Recall

- Basic statistical data description
 - Central Tendency
 - Mean, Median, Mode, Midrange
 - Symmetric vs. Skewed Data
 - **Dispersion of Data** 0
 - Range, Quantiles, Quartiles, Interquartile Range(IQR),
 - Variance, Standard Deviation

Recall

Graphic displays of basic statistics of data

Univariate distributions

Bivariate distributions

Outline

Data Preprocessing: An Overview

- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

Why Preprocess the Data? Data Quality Matters

Garbage Data In

Source: https://www.researchgate.net/figure/Data-quality-and-standards-garbage-in-data-garbage-out-results_fig4_333491695

Yong Zhuang

If your data collection is wrong, any conclusion is wrong!

Knowledge Discovery & Data Mining

Garbage Data Out

Measures for Data Quality

- Accuracy: correct or wrong, accurate or not
- **Completeness:** not recorded, unavailable, ...
- Consistency: some modified but some not, ...
- **Timeliness:** timely update?
- **Believability:** how trustable the data are correct?
- Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data Cleaning

- Fill in missing values
- Smooth noisy data
- Identify or remove outliers
- Resolve
 - inconsistencies

Data Integration

- Databases
- Data cubes
- Files

Yong Zhuang

Data Reduction

- Dimensionality reduction
- Numerosity reduction
- Data
 - Compression

Data Transformation

- Normalization
- Discretization

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

Data Cleaning

- computer error, transmission error
 - aggregate data is included:

e.g., Occupation="" (missing data)

- **Noisy:** Contains noise, errors, or outliers:
 - e.g., Salary="-10" (an error)
- Inconsistent: Contains differences in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - Differences between duplicate records
- Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday

Yong Zhuang

Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or

• Missing values: Attribute values are missing, some attributes of interest are missing, or only

Data Cleaning: Missing Values

- Attribute values unavailable when collecting data
 - Usually encoded as null values in the database

index	Name	Age	Gender	Salary
0	John Doe	28.0	Male	50000.0
1	Jane Smith	NaN	Female	60000.0
2	Alice Johnson	35.0	NaN	NaN
3	NaN	22.0	Male	45000.0
4	Chris Ray	NaN	Male	70000.0

- Examples:

 - The equipment used to gather the data might not work properly. Some data might not match other data, so it's removed. Maybe someone didn't understand how to input the data. \circ At times, people might not think some data is important, so they don't add it. • The data's history or any changes might not be recorded.

How to Handle Missing Data?

- **Ignore the tuple:** Discard all data objects with missing values
 - \circ not effective when the % of missing values per attribute varies greatly.
- Fill in the missing value manually:
 - \circ is time consuming and may not be feasible given a large data set with many missing values.
- Fill in it automatically with
 - a global constant : e.g., Replace all missing attribute values by "unknown".
 - the mining program may mistakenly think that they form an interesting concept.
 - the attribute mean, median, or mode
- **Model-based** approach

regression or inference-based methods such as Bayesian formula or decision tree

Knowledge Discovery & Data Mining

11

Data Cleaning: Noise

• Noise: random error or variance in a measured variable, i.e., corrupted data

Yong Zhuang

Data Cleaning: Noise

- How do data get corrupted?
 - Error in measurement due to faulty or low-resolution sensors
 - Error in data recording
 - External (environmental) factors that affect the measurement process 0
- Are noisy data useful or should they be discarded?
- Are there any reasons to intentionally add noise to data?

Knowledge Discovery & Data Mining

13

Data Cleaning: Denoising

- Binning (is used as a discretization technique.) first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Low-pass filter
 - Allow the low-frequency components of an input signal to pass through while reducing high-frequency components.
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers) 0

Denoising: Binning

- Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34
 - The data for price are first sorted and then partitioned into equal-frequency bins of size 3
 - Smooth by bin means: each value in a bin is replaced by the mean value of the bin
 - Smooth by bin medians: each bin value is replaced by the bin median
 - Smooth by bin boundaries: the minimum and maximum values in a given bin are identified as the bin boundaries. Each bin value is then replaced by the closest boundary value.

• **Binning:** smooth a sorted data value by consulting its "neighborhood," the values around it.

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15 Bin 2: 21, 21, 24 Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9 Bin 2: 22, 22, 22 Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15 Bin 2: 21, 21, 24 Bin 3: 25, 25, 34

Denoising: Regression

- **Regression:** smooth by fitting the data into regression functions
 - Linear regression involves finding the "best" line to fit two attributes (or variables) so that one attribute can be used to predict the other.
 - Multiple linear regression: more than two attributes are involved, and the data are fit Ο to a multidimensional surface

Denoising: Low-pass filter

process signal usually lies towards the low-frequency end.

• Low-pass filter: Low-pass filters allow the low-frequency components of an input signal to pass through while attenuating (reducing) high-frequency components. Measurement noise falls into the high-frequency range of the signal spectrum, while the underlying

Knowledge Discovery & Data Mining

17

Data Cleaning: Outliers

the other data objects in the data set

• Outlier analysis: Outliers may be detected by clustering: similar values are organized into groups or "clusters." Values that fall outside of the set of clusters may be considered as outliers

• Outliers are data objects with characteristics that are considerably different than most of

Outliers vs. Noise

- Difference between noise and outliers?
- Are outliers useful?

Data Cleaning as a Process

- Data discrepancy detection

 - Use metadata (e.g., domain, range, dependency, distribution) • Check uniqueness rule, consecutive rule and null rule
 - Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Data migration and integration
 - transformations through a graphical user interface
 - Data migration tools: allow transformations to be specified • ETL (Extraction/Transformation/Loading) tools: allow users to specify
- Integration of the two processes • Iterative and interactive

Outline

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning

Data Integration

Data integration

Data integration: Combines data from multiple data stores(sources) into a coherent store.

- Schema integration: e.g., A.cust-id ≡ B.cust-# Integrate metadata from different sources
- Entity identification problem:
- Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton • Detect and resolve data value conflicts:
 - For the same real world entity, attribute values from different sources are different • Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - At the tuple level: The same object may occur in different databases
 - Duplication detection: Careful integration can help reduce/avoid redundancies and inconsistencies in the resulting data set. This can help improve the accuracy and speed of the subsequent data mining process.
 - **Between attributes:** One attribute may be a "derived" attribute in another table, 0 e.g., annual income and monthly income
- - Symbolic values: χ^2 test
 - Numeric values: correlation analysis

