Knowledge Discovery & Data Mining — Data Preprocessing — Data compression & Sampling Instructor: Yong Zhuang

yong.zhuang@gvsu.edu

Yong Zhuang

Based on the original version by Professor Jiliang Tang

Data Reduction

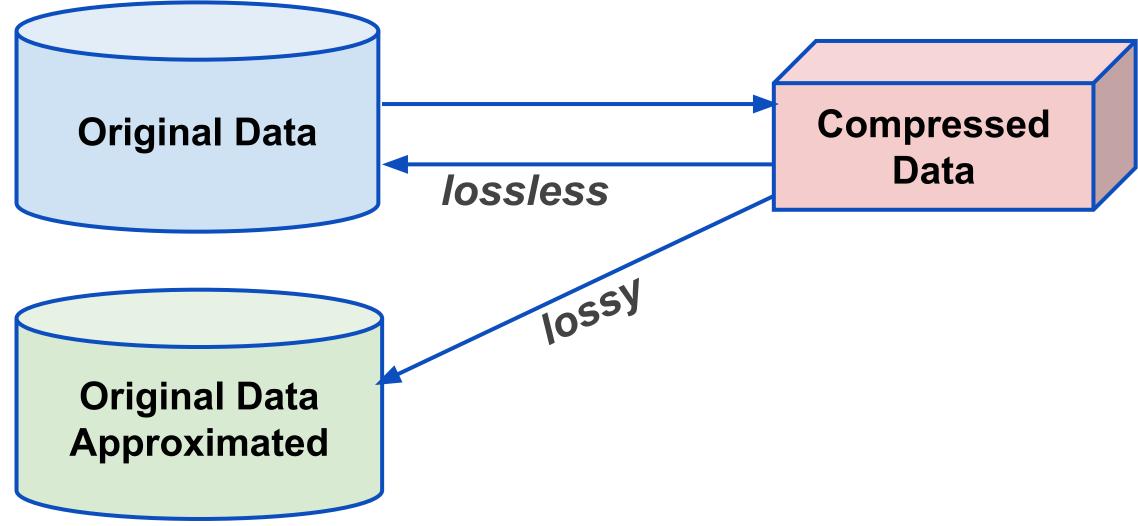
Data compression

- Discrete wavelet transform (DWT)
- Sampling
 - Sampling without replacement
 - Sampling with replacement
 - Cluster or Stratified Sampling

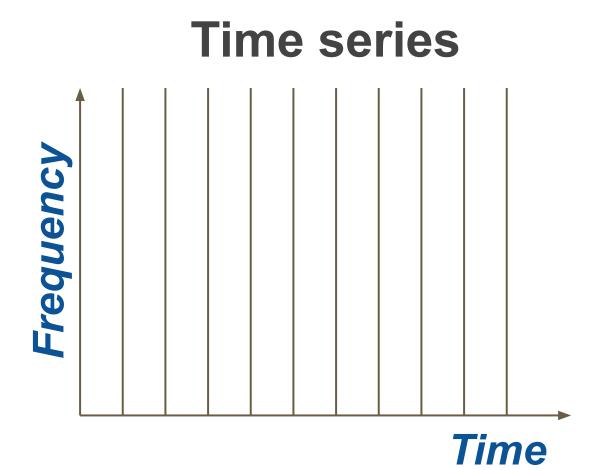
Data Compression

In data compression, transformations are applied so as to obtain a reduced or "compressed" representation of the original data.

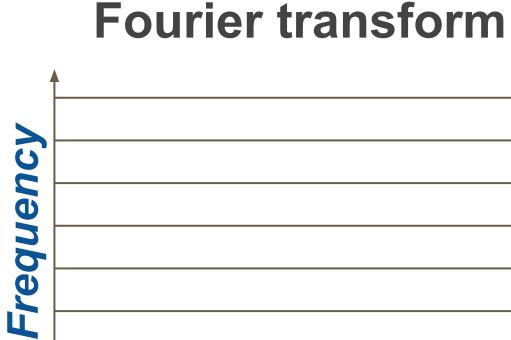
- If the original data can be reconstructed from the compressed data without any information loss, the data reduction is called lossless.
- If, we can reconstruct only an approximation of the original data, then the data reduction is called **lossy**



x', of wavelet coefficients.



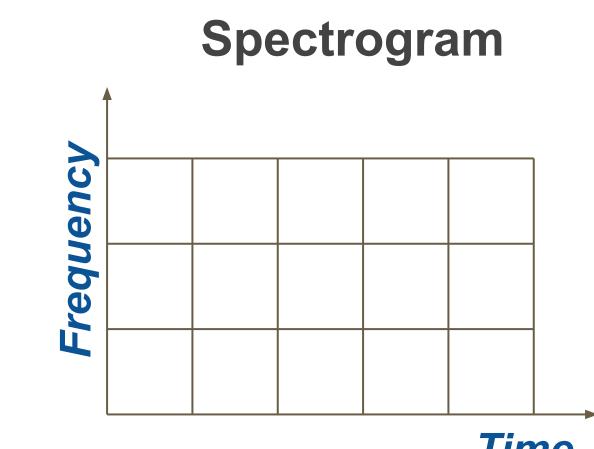
focuses on the raw temporal evolution of data



Time

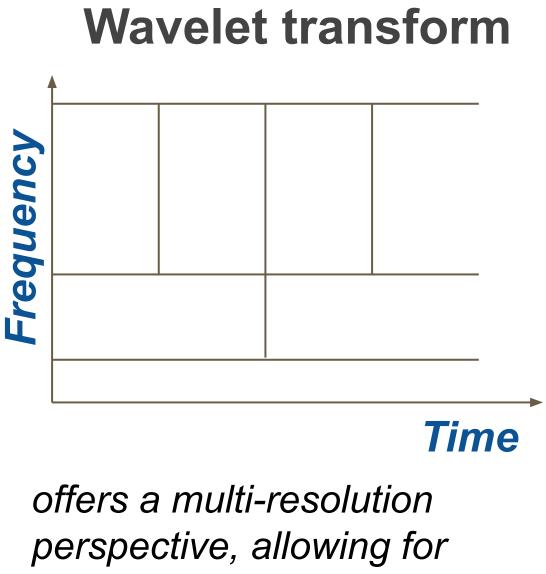
breaks down a signal into its constituent frequencies, but lose the exact timing of these frequencies.

The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied to a data vector x, transforms it to a numerically different vector,



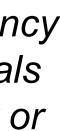
Time

provides a time-frequency representation, showing when and with what intensity each frequency is present.



variable time and frequency resolution, ideal for signals that have non-stationary or

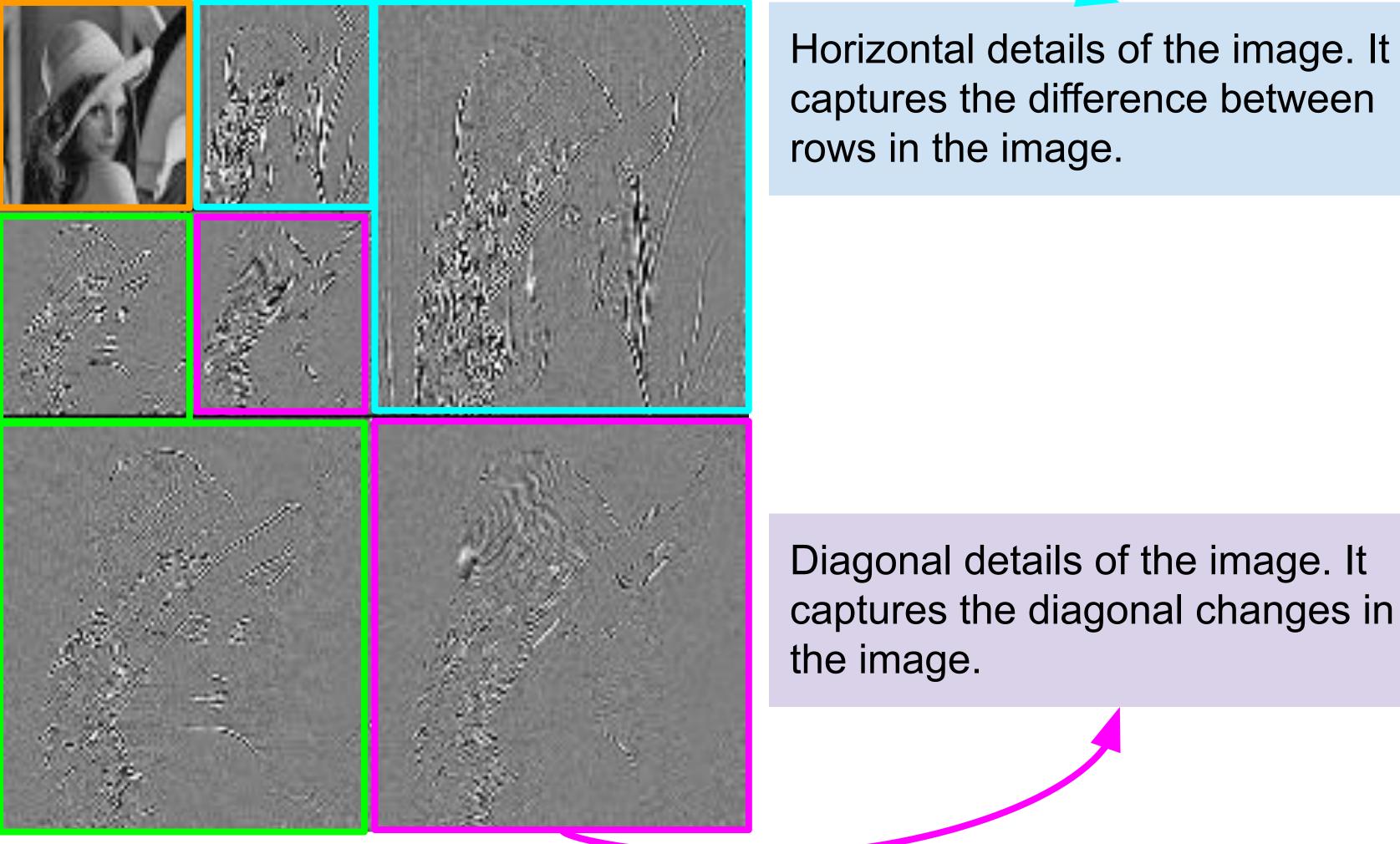
evolving characteristics.

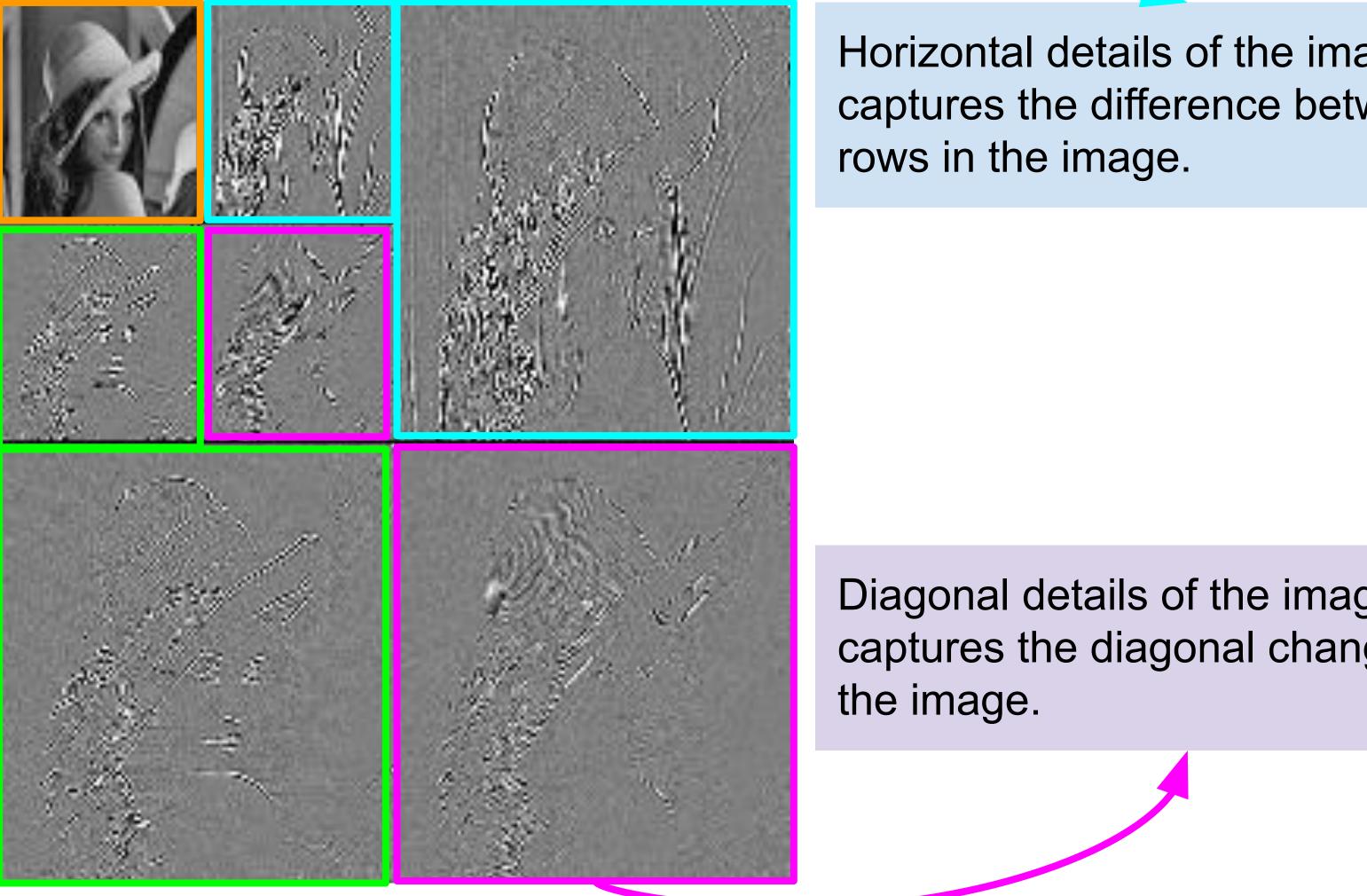


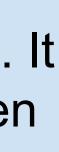
Used for image compression

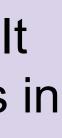
A low-resolution of the original image.

Vertical details of the image. It captures the difference between columns in the image.









- the length a power of 2.
- data points:
 - Ο average = $(x_i+x_{i+1})/2$
 - Ο
- average value and one difference value. The result is a dataset where:
 - The first half contains the average values (smoothed data), Ο
 - Ο same as the original.
- can be repeated multiple times until the dataset is reduced to a single average value.

Data Preparation: Ensure the data length L is a power of 2. If not, pad the data with zeros to make

Transform Functions: During the transformation, two operations are applied to consecutive pairs of

Smoothing (Averaging): Calculate the average of two consecutive points, xi and xi+1:

Differencing: Calculate the difference between the same pair of points: difference = $(x_i - x_i + 1) / 2$ **Transform Application:** For each pair of consecutive data points, the transformation produces one

The second half contains the difference values (details), but the overall data length remains the

Recursive Application for Multi-resolution Analysis: To analyze the data at different levels of detail, the transform is recursively applied to the average values from the previous step. This process

then it can be transformed to S'=

- **Data Preparation**:
 - Ensure data length L is a power of 2. Pad with zeros if necessary. Ο
- **Transform Functions:** For each pair *x_i* and *x_{i+1}*:
 - Average (smoothing): $avg = (x_i + x_{i+1}) / 2$ Ο
 - Difference (differencing): diff = $(x_i x_{i+1}) / 2$ Ο
- **Transform Application:** (Total length remains unchanged).
 - First half of the result = average values Ο
 - Second half = difference values Ο
- **Recursive Application for Multi-resolution Analysis:**
 - Repeat the transform on the average values for multi-level resolution until Ο the dataset is reduced to a single average value.

Example. Suppose we have a time series S = [2, 2, 0, 2, 3, 5, 4, 4], using DWT,

Example. Suppose we have a time series S = [2, 2, 0, 2, 3, 5, 4, 4], using DWT, then it can be transformed to S'=

Resolution	Averages
8	[2, 2, 0, 2, 3, 5, 4, 4]
4	[2,1,4,4]

Suppose we aim to represent S using only L/2 numbers; which four values could best approximate S?

to reconstruct the original list of values

Example. Suppose we have a time series S = [2, 2, 0, 2, 3, 5, 4, 4], using DWT, then it can be transformed to S'=[**2.75**, **-1.25**, **0.5**, **0**, **0**, **-1**, **-1**, **0**]

Resolution	Averages	Detail Coefficients(difference)
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0 , -1 , -1 , 0]
2	[1.5 , 4]	[0.5 , 0]
1	[2.75]	[-1.25]

Example. Suppose we have a time series S = [2, 2, 0, 2, 3, 5, 4, 4], using DWT, then it can be transformed to S'=[**2.75**, **-1.25**, **0.5**, **0**, **0**, **-1**, **-1**, **0**]

Resolution	Averages	Detail Coefficients(difference)
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0 , -1 , -1 , 0]
2	[1.5 , 4]	[0.5 , 0]
1	[2.75]	[-1.25]

lossless or lossy?

Example. Suppose we have a time series S = [2, 2, 0, 2, 3, 5, 4, 4], using DWT, then it can be transformed to S'=[**2.75**, **-1.25**, **0.5**, **0**, **0**, **-1**, **-1**, **0**]

Resolution	Averages	Detail Coefficients(difference)
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0 , -1 , -1 , 0]
2	[1.5 , 4]	[0.5 , 0]
1	[2.75]	[-1.25]

Where is the Data Compression?

Knowledge Discovery & Data Mining

11

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- size of the data
- Key principle: Choose a representative subset of the data
 - Ο skew
 - Develop adaptive sampling methods, e.g., stratified sampling Ο

Allow a mining algorithm to run in complexity that is potentially sub-linear to the

Simple random sampling may have very poor performance in the presence of

Knowledge Discovery & Data Mining

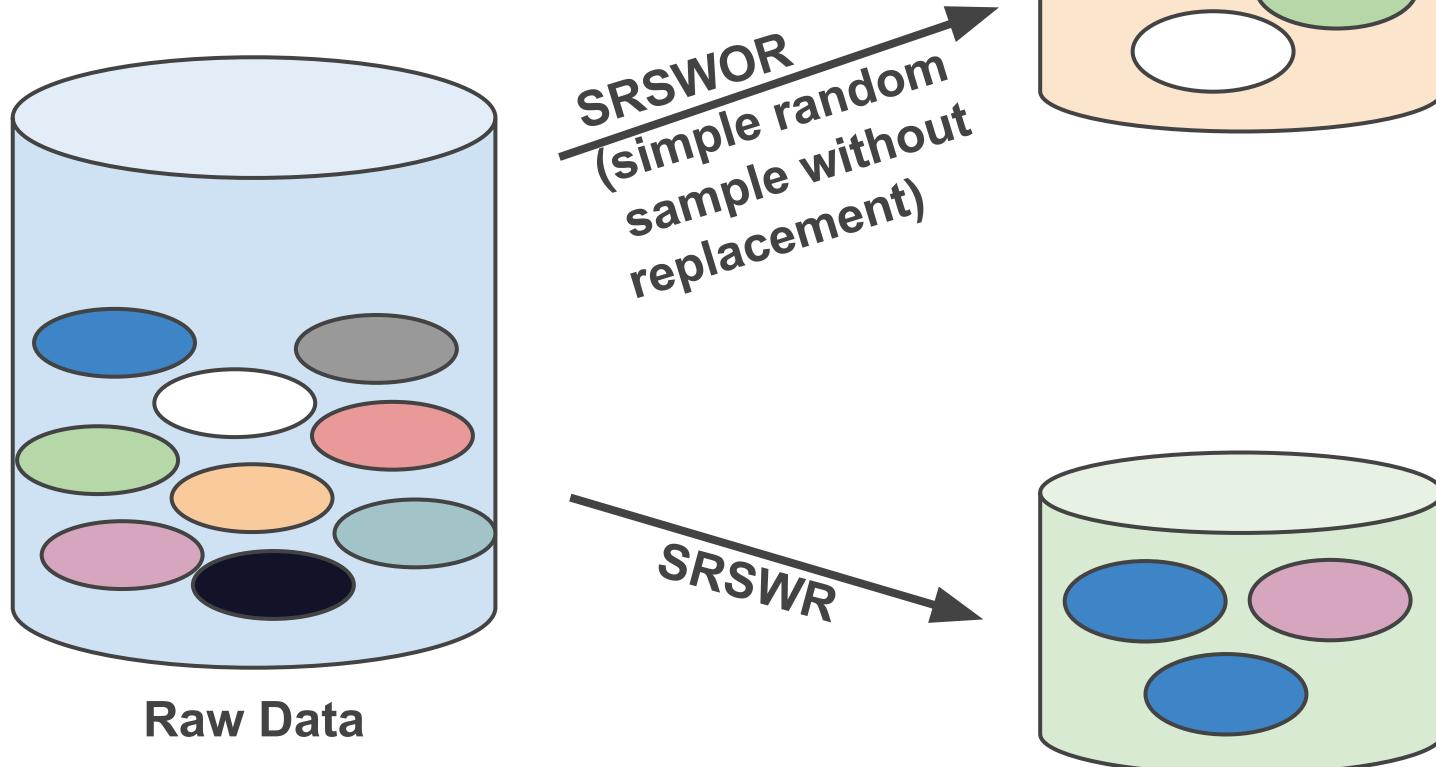
12

Types of Sampling

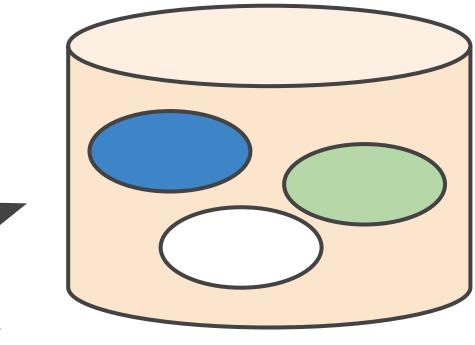
- Simple random sampling
 - There is an equal probability of selecting any particular item Ο
- Sampling without replacement (SRSWOR) Once an object is selected, it is removed from the population Ο
- Sampling with replacement (SRSWR)
 - A selected object is not removed from the population Ο
- Stratified sampling:
 - Partition the data set, and draw samples from each partition (proportionally, Ο i.e., approximately the same percentage of the data)
 - Used in conjunction with skewed data Ο

13

Sampling: With or Without Replacement

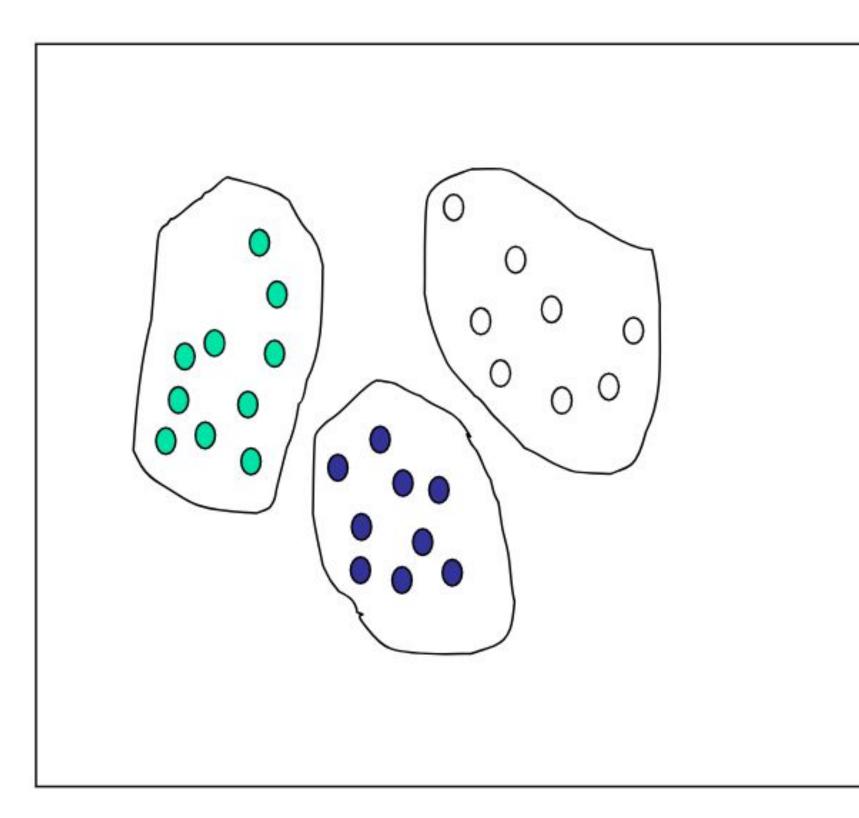


Yong Zhuang



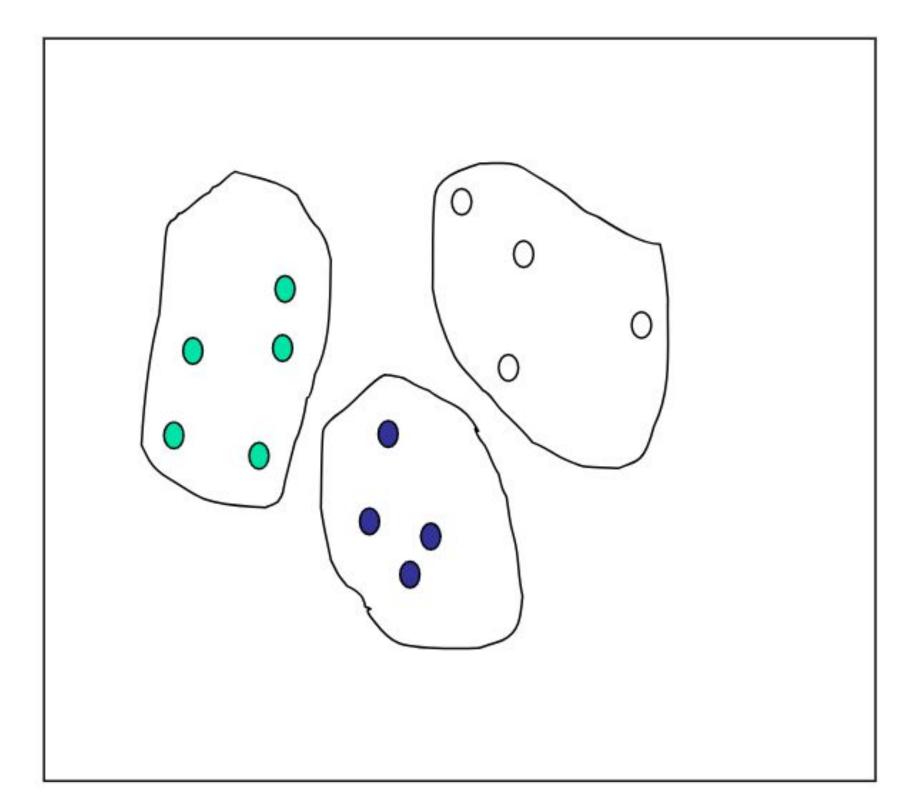
Sampling: Cluster or Stratified Sampling

Raw Data



Yong Zhuang

Cluster/Stratified Sample



Summary

- Data compression
 - Discrete wavelet transform (DWT)
- Sampling
 - Sampling without replacement
 - Sampling with replacement
 - Cluster or Stratified Sampling

