Knowledge Discovery & Data Mining

- Transformers -

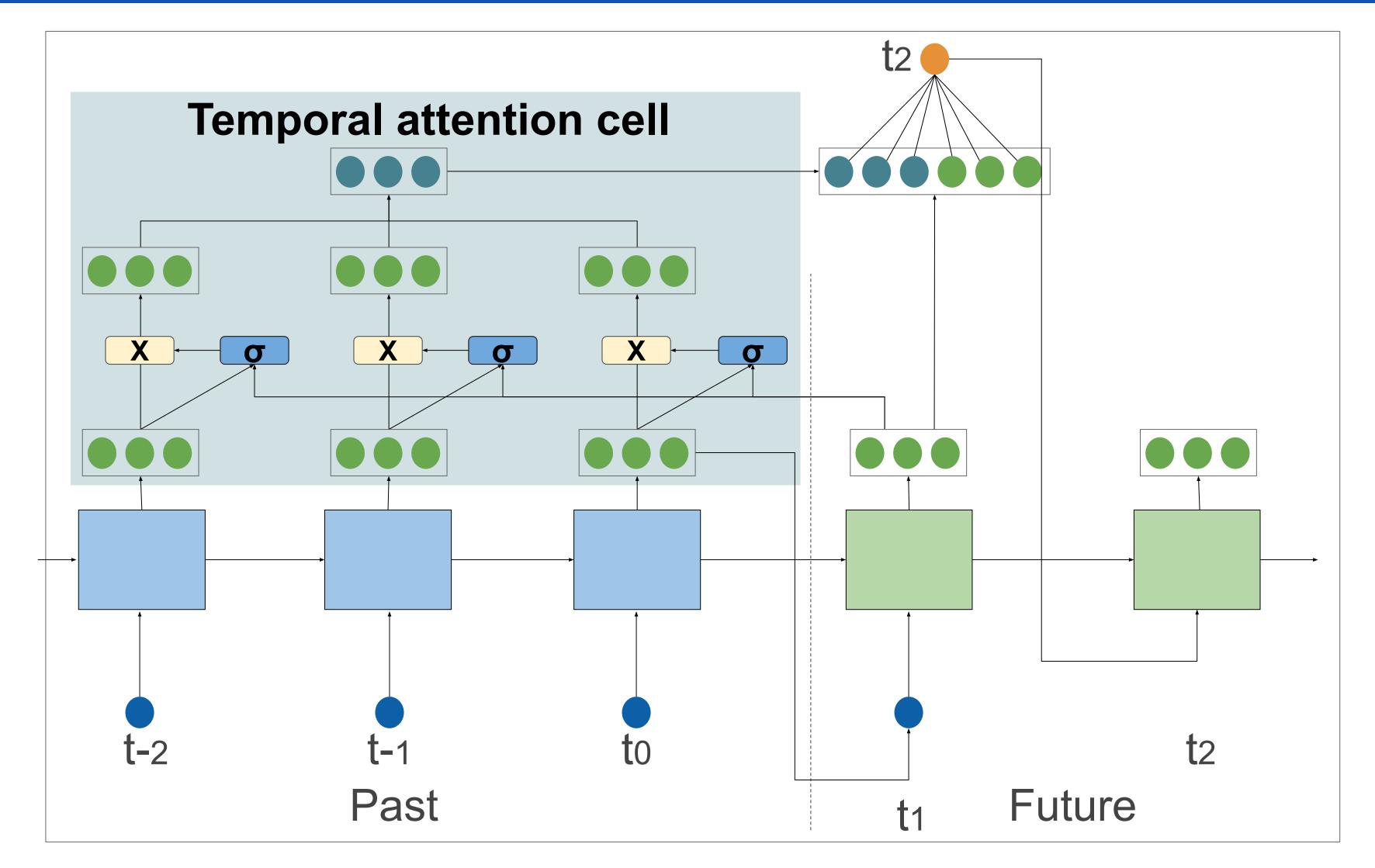
Instructor: Yong Zhuang

yong.zhuang@gvsu.edu

Outline

- Transformers
 - Self-Attention, Softmax,
 - Multi-Headed
 - Self-Attention,
 - Positional Encoding,
 - Residual Connection,
 - Layer Normalization,
 - Encoder-Decoder

Temporal attention injection

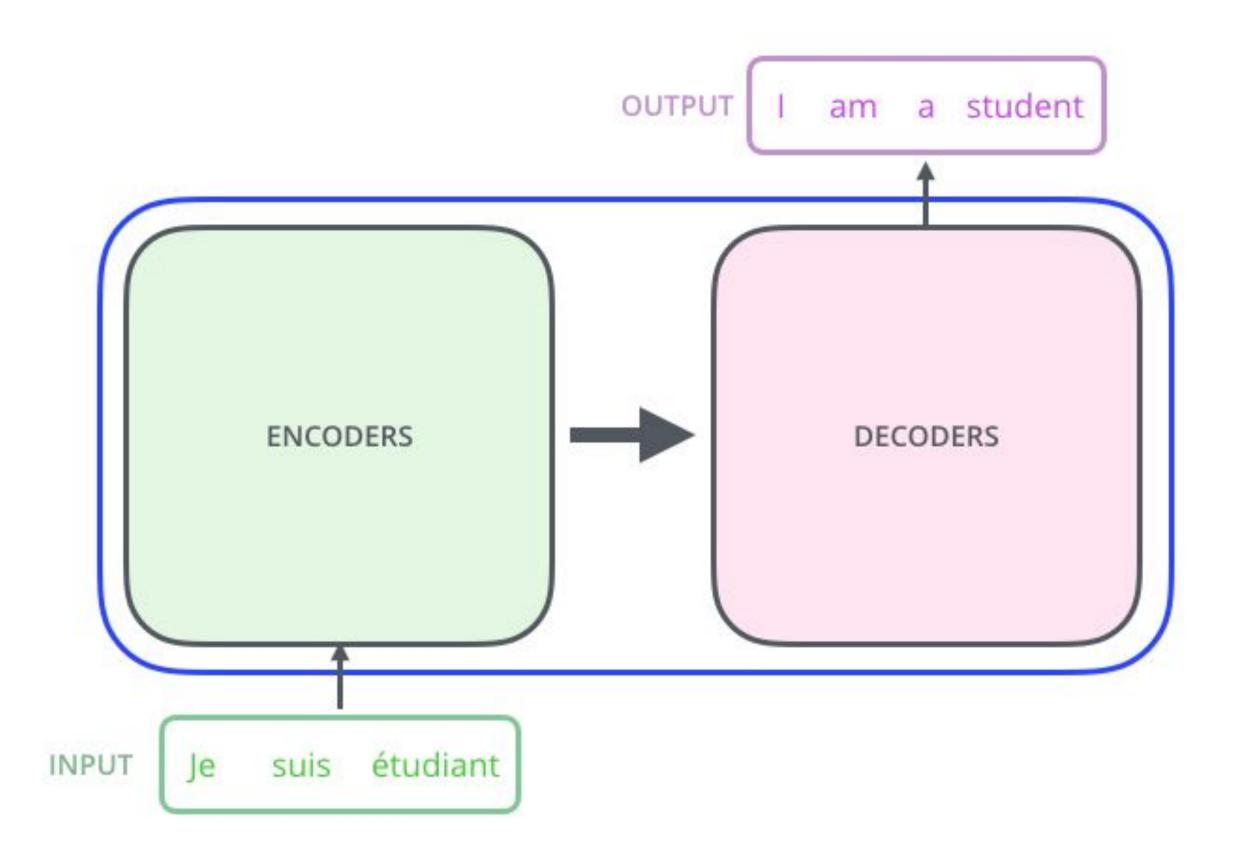


In light of the performance enhancements brought by attention mechanisms, is the RNN component still necessary in our models, or can attention mechanisms effectively replace the traditional role of RNNs?

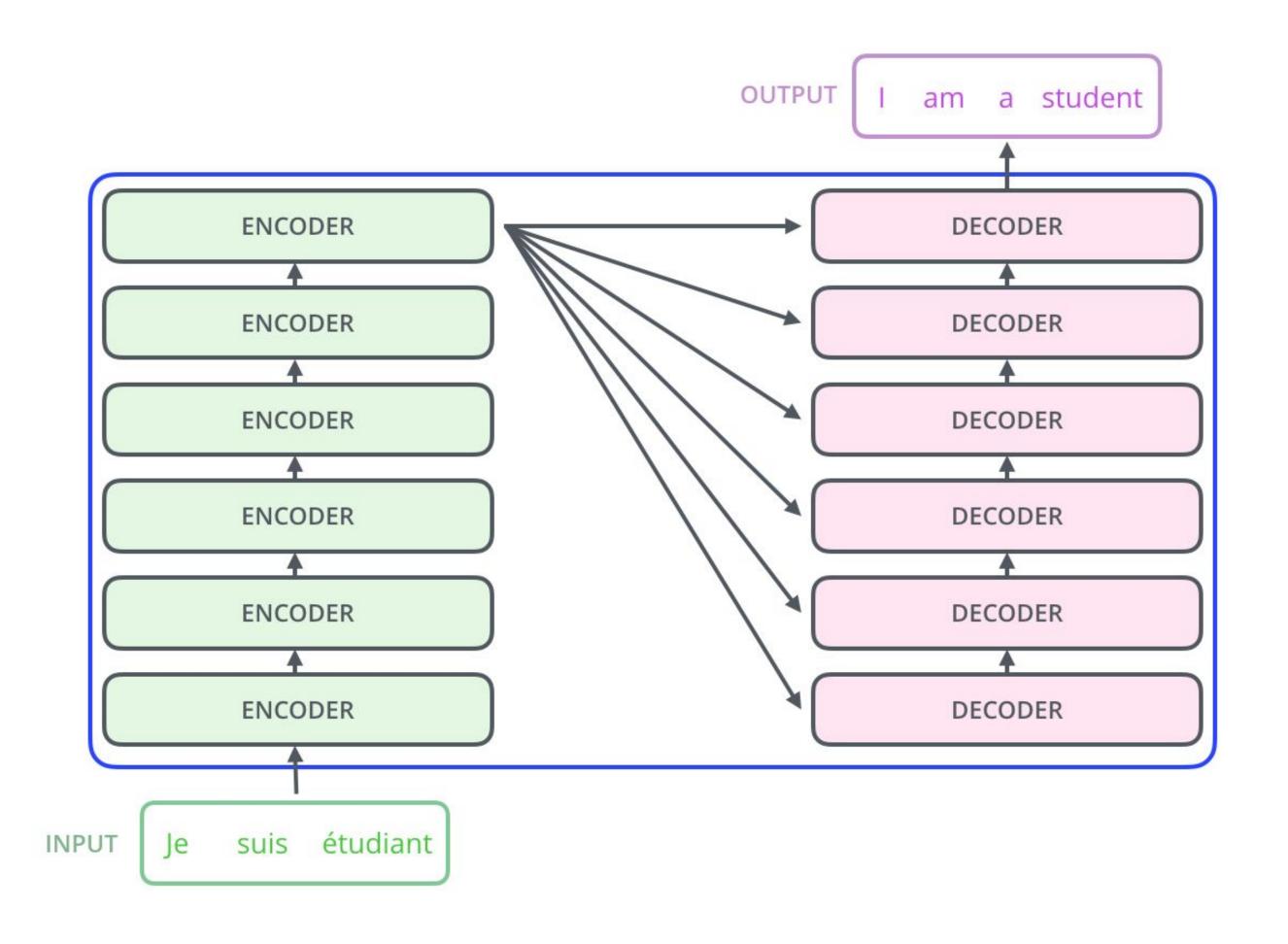
Transformer

Attention is all you need

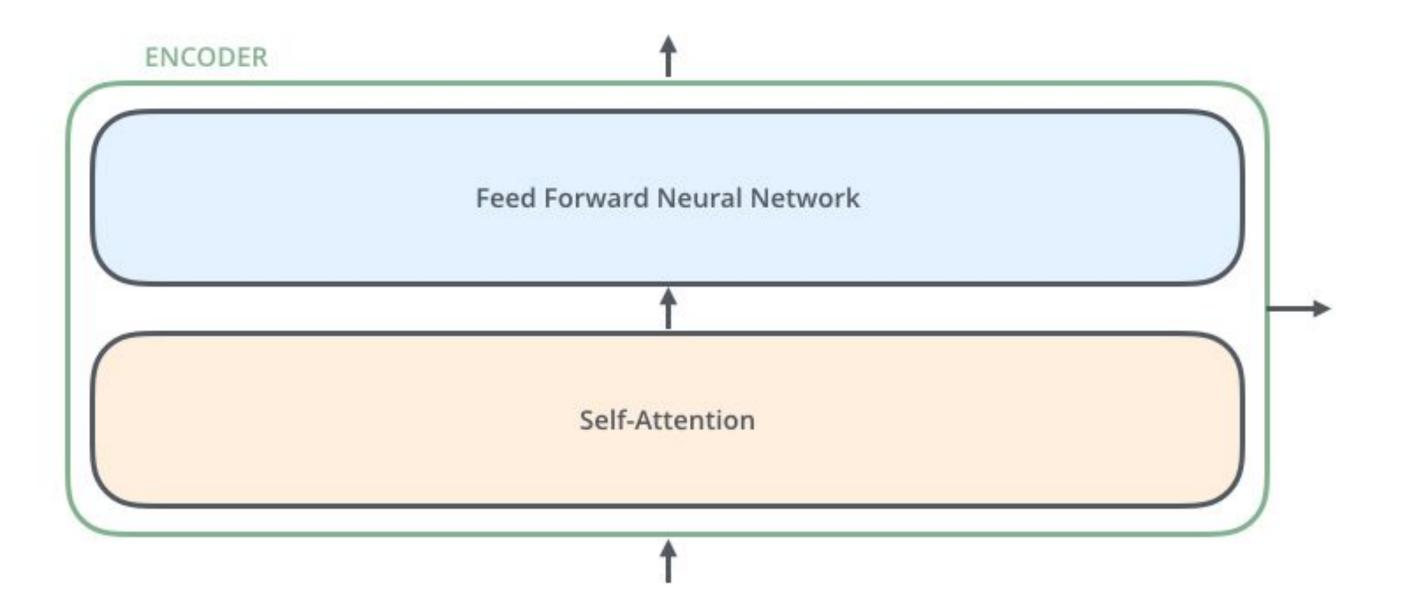
Encoder-Decoder Architecture



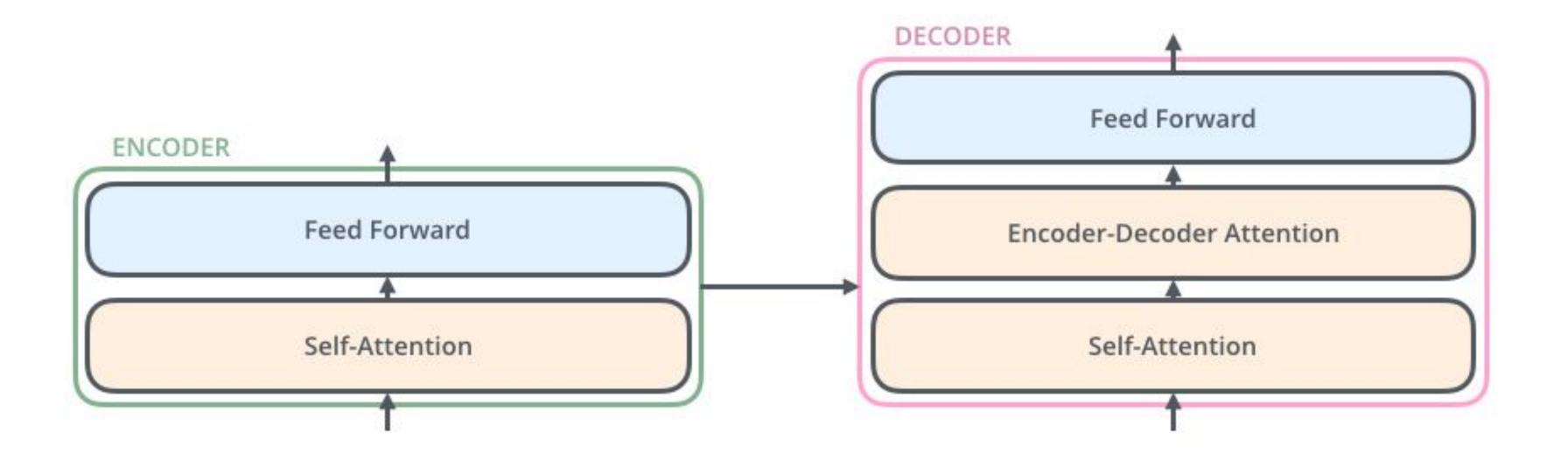
Encoder-Decoder Architecture



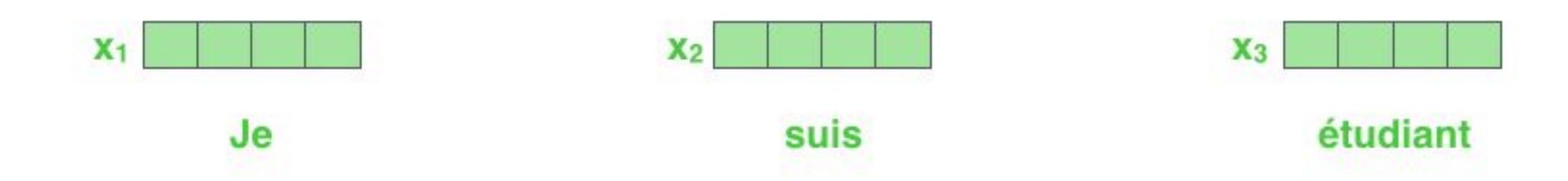
Encoder



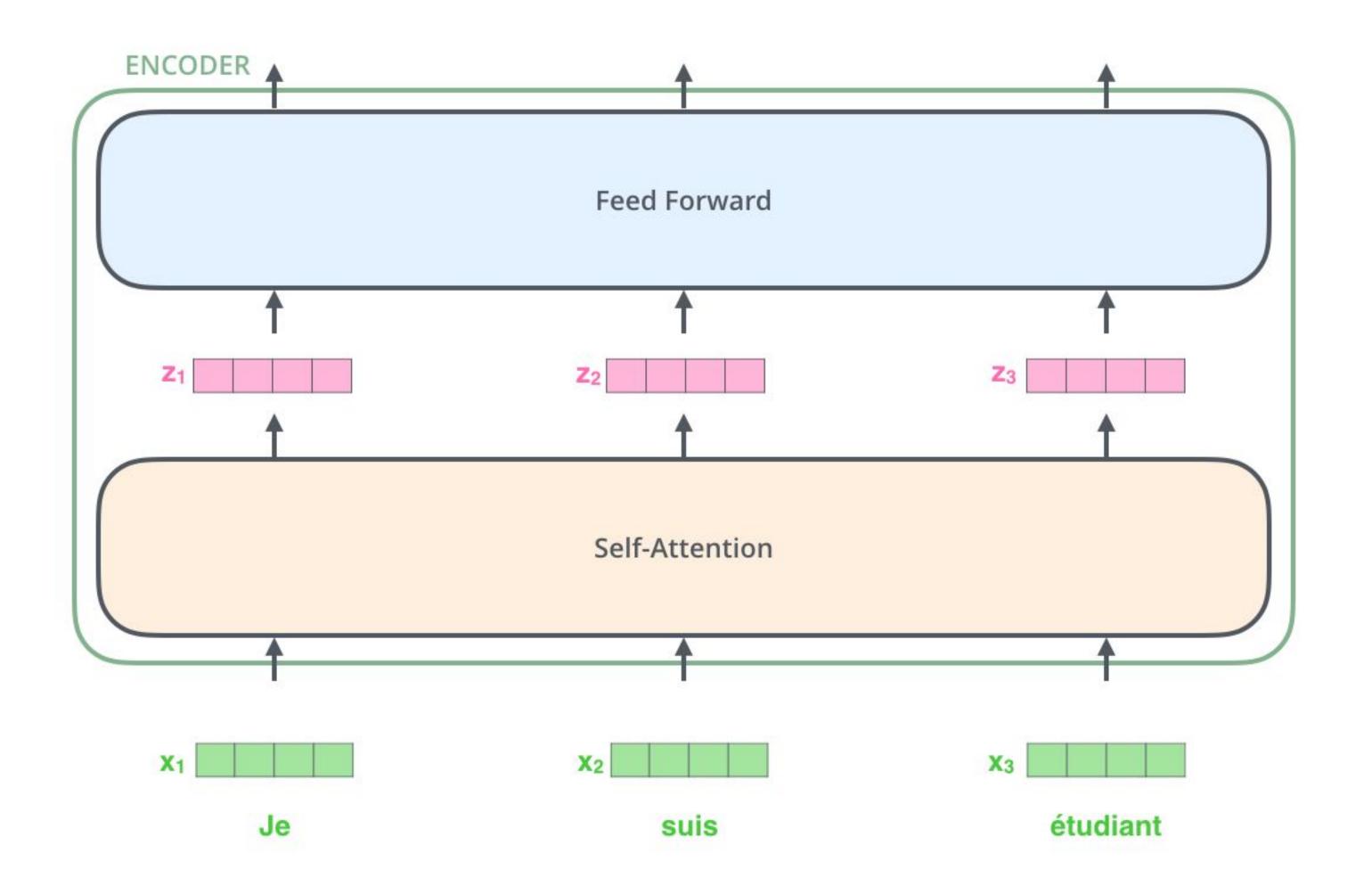
Decoder



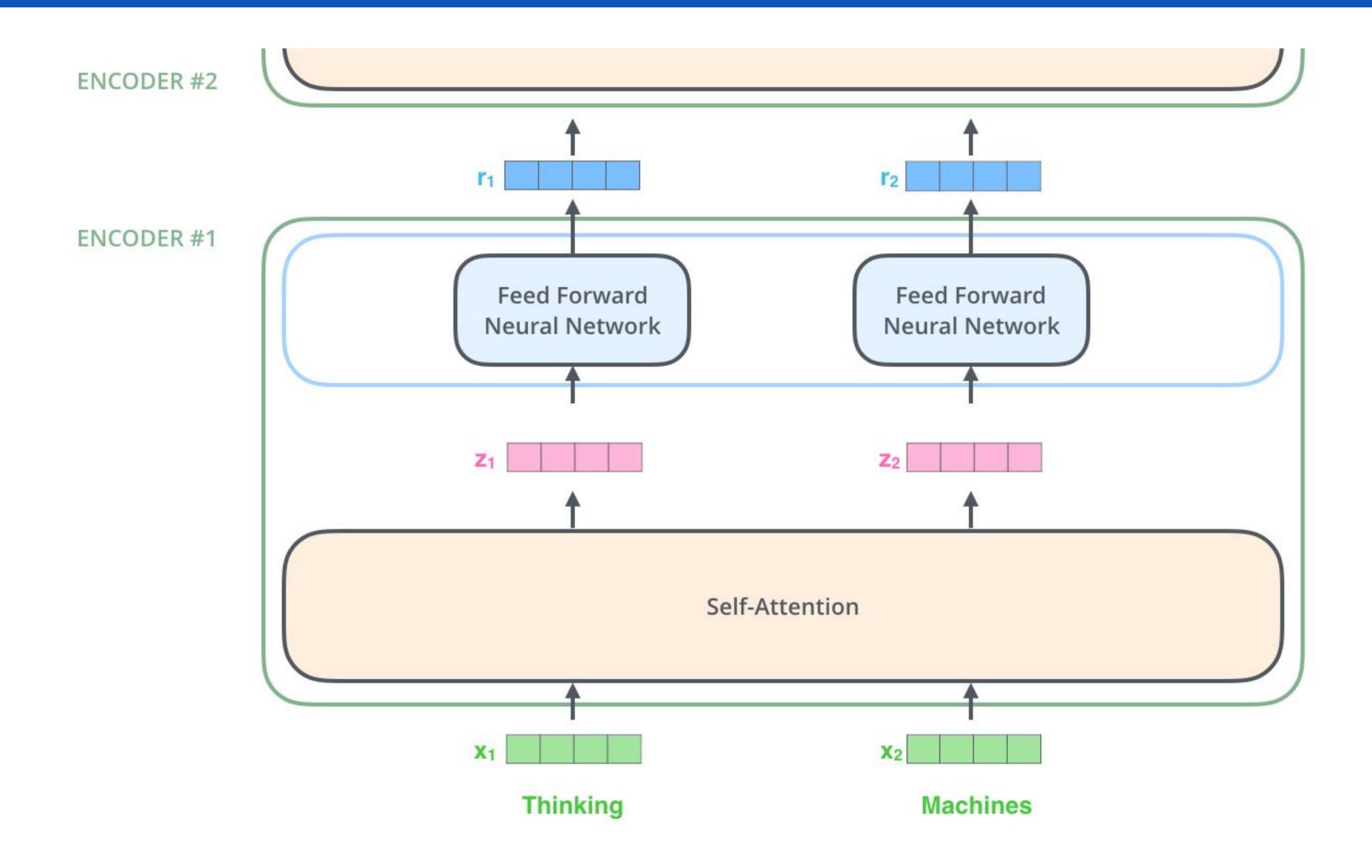
Word Embedding



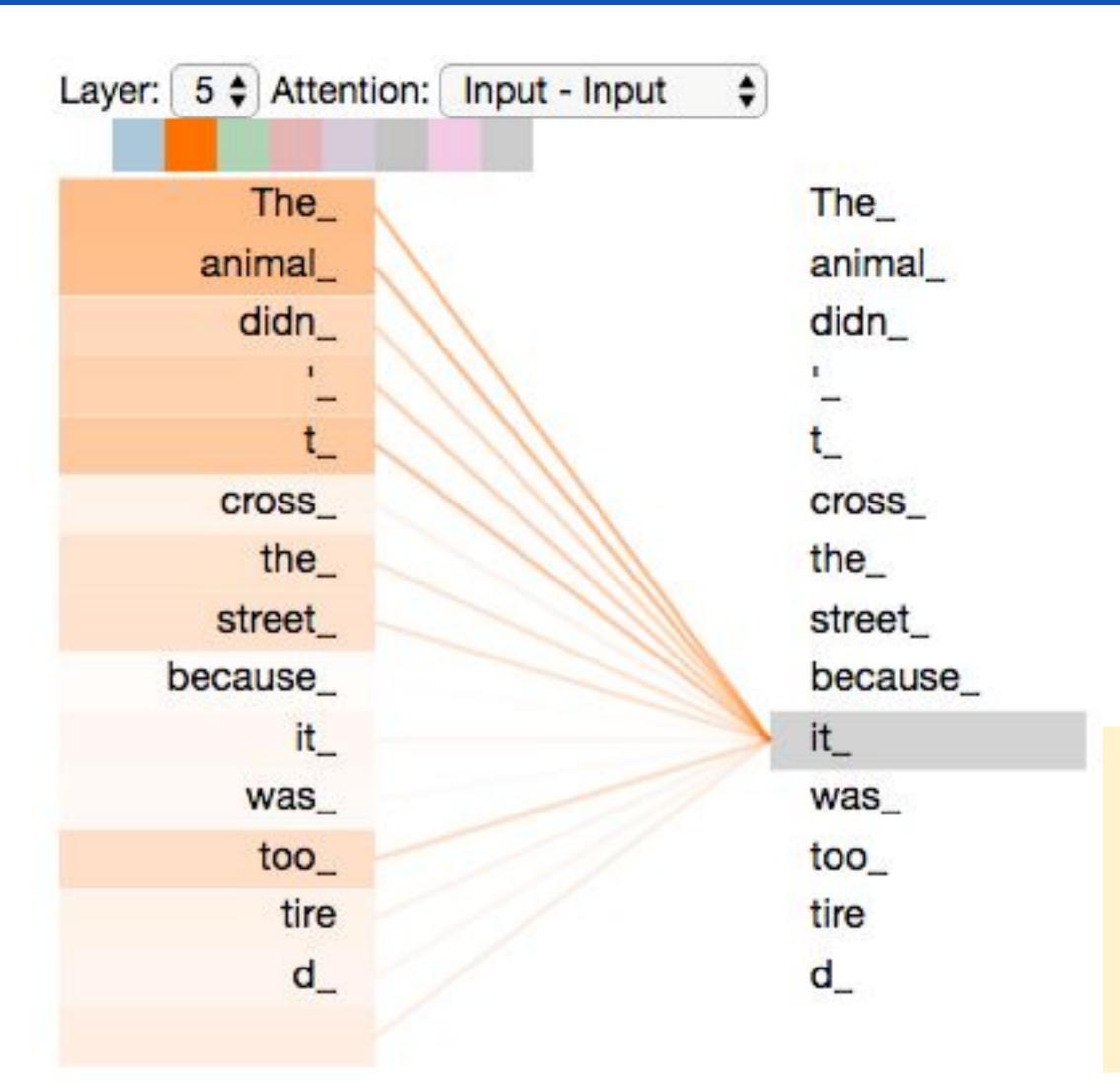
Feeding Word Embeddings into the Encoder



Encoding



Self-Attention



As we are encoding the word "it" in encoder #5 (the top encoder in the stack), part of the attention mechanism was focusing on "The Animal", and baked a part of its representation into the encoding of "it".

Self-Attention in Detail

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	WQ
Keys	k ₁	k ₂	WK
Values	V ₁	V ₂	WV

Self-Attention in Detail

Input

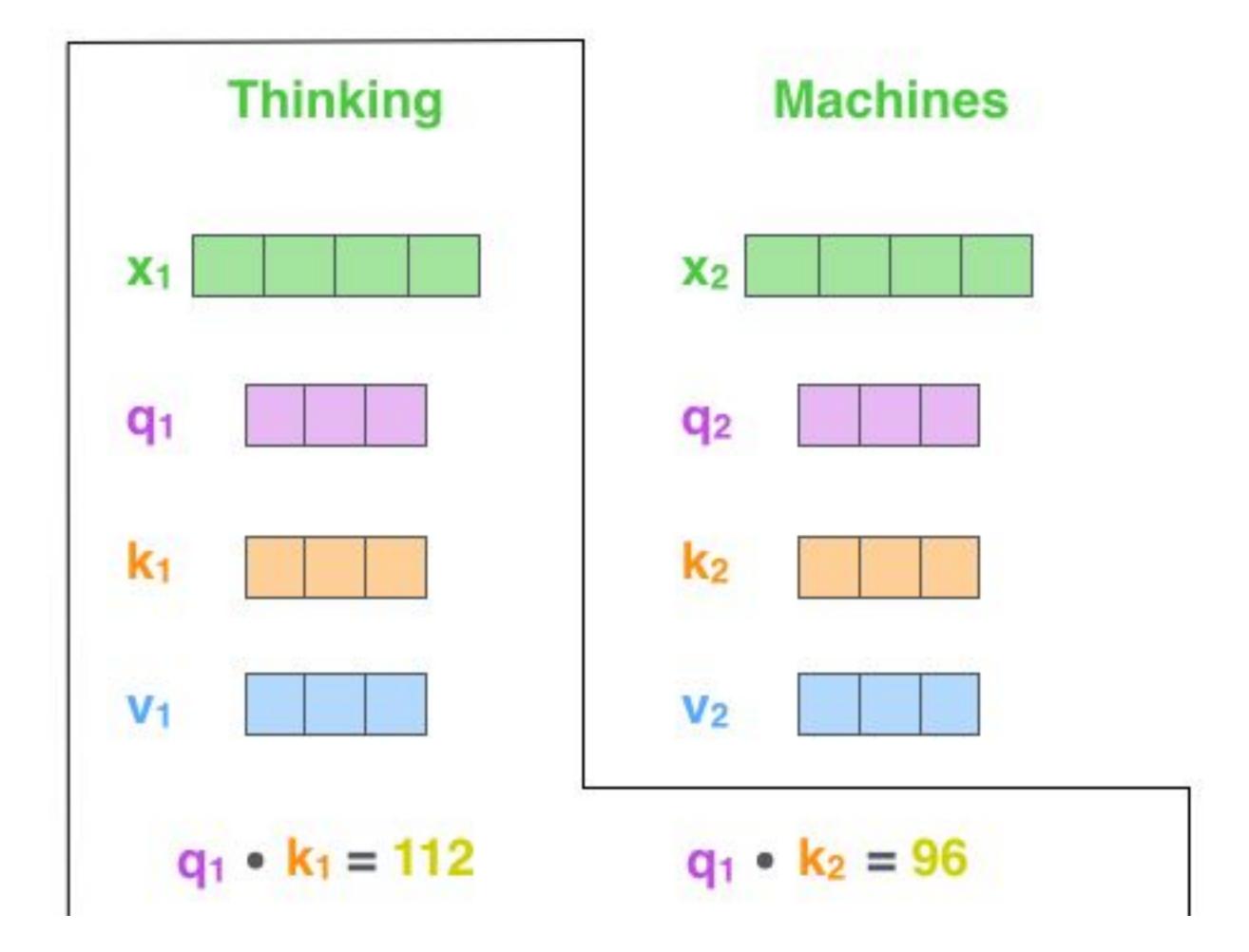
Embedding

Queries

Keys

Values

Score



Self-Attention in Detail

Input

Embedding

Queries

Keys

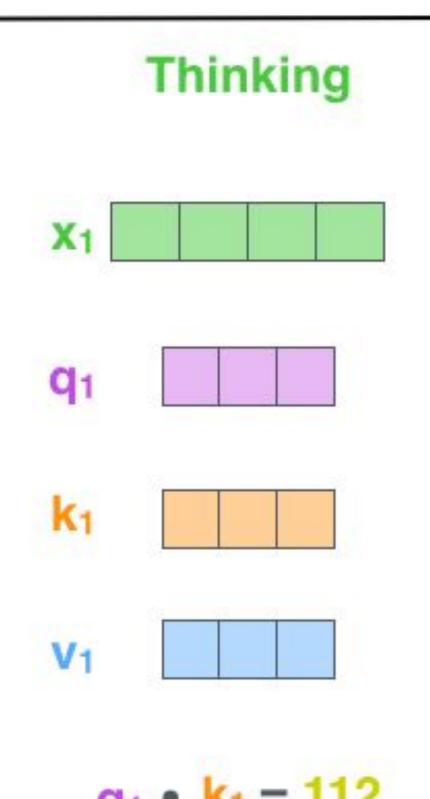
Values

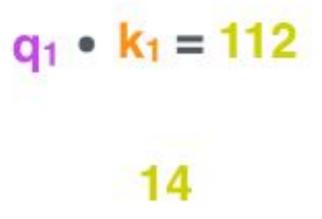
Score

Divide the scores by 8 (the square root of the dimension of the key vectors used in the paper – 64. This leads to having more stable gradients.

Divide by 8 ($\sqrt{d_k}$)

Softmax





0.88

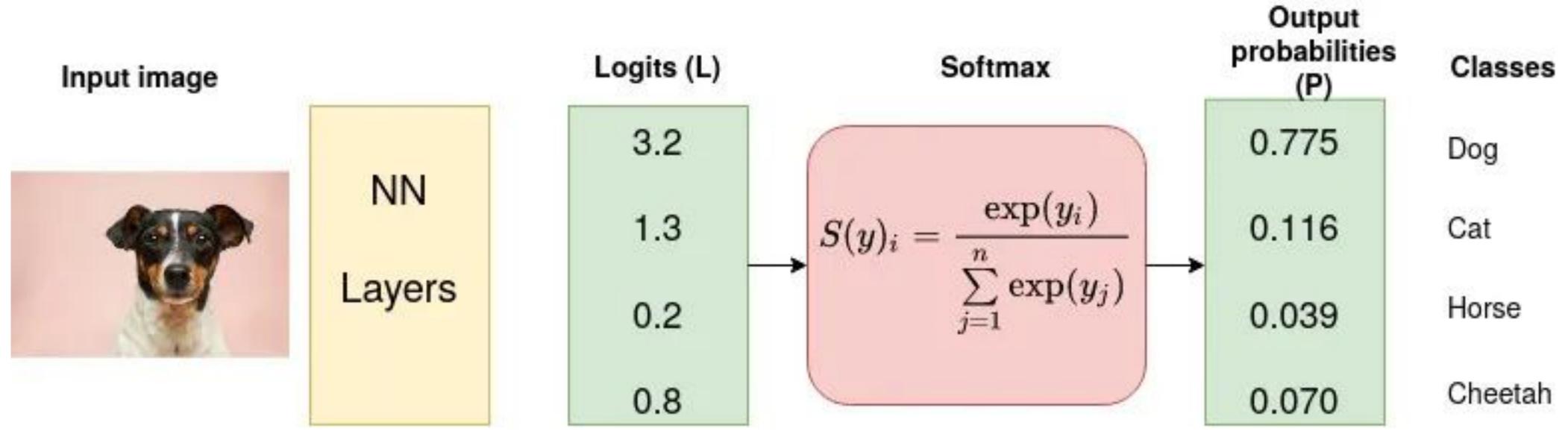
Machines

$$q_1 \cdot k_2 = 96$$

12

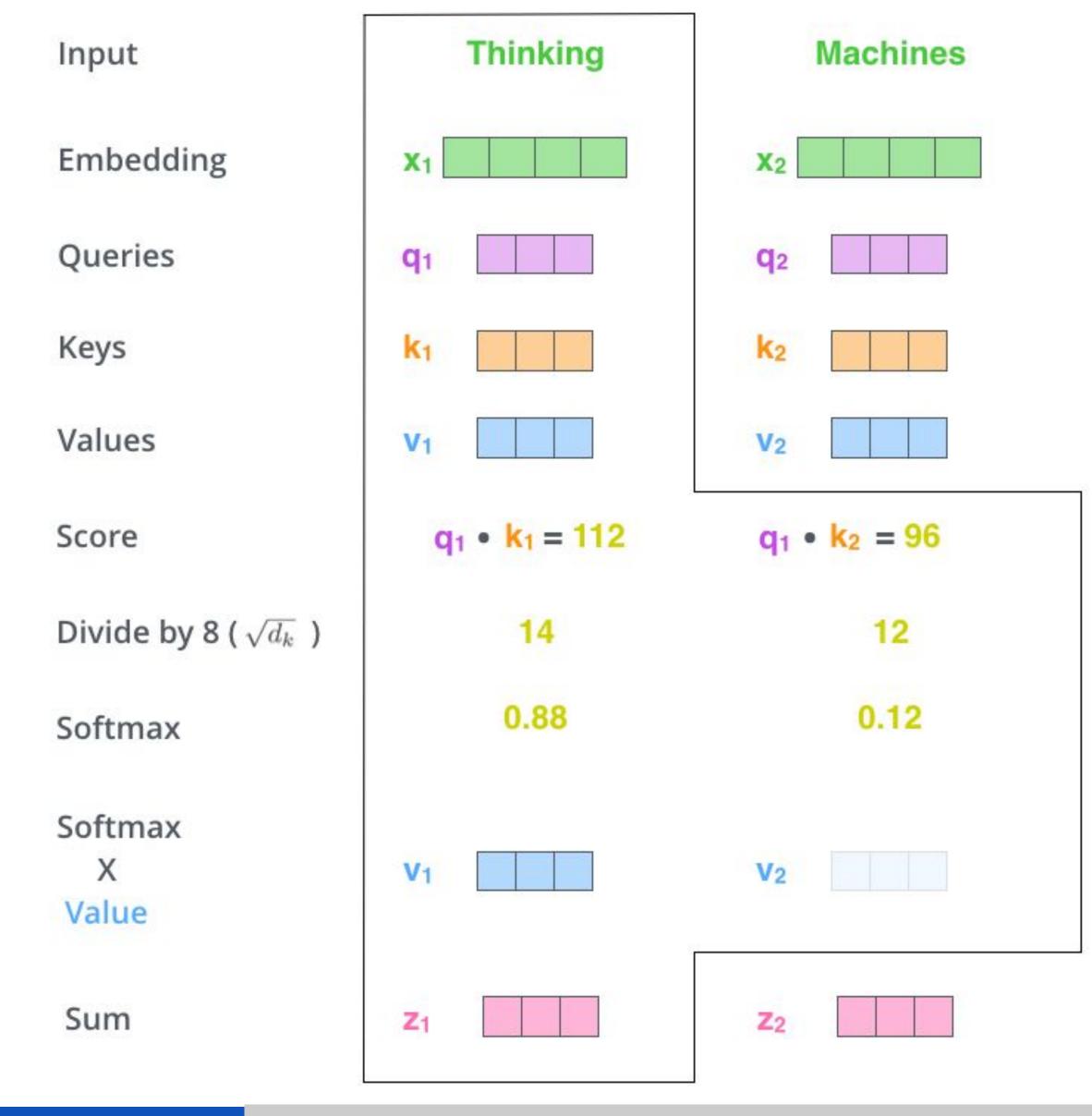
0.12

Softmax

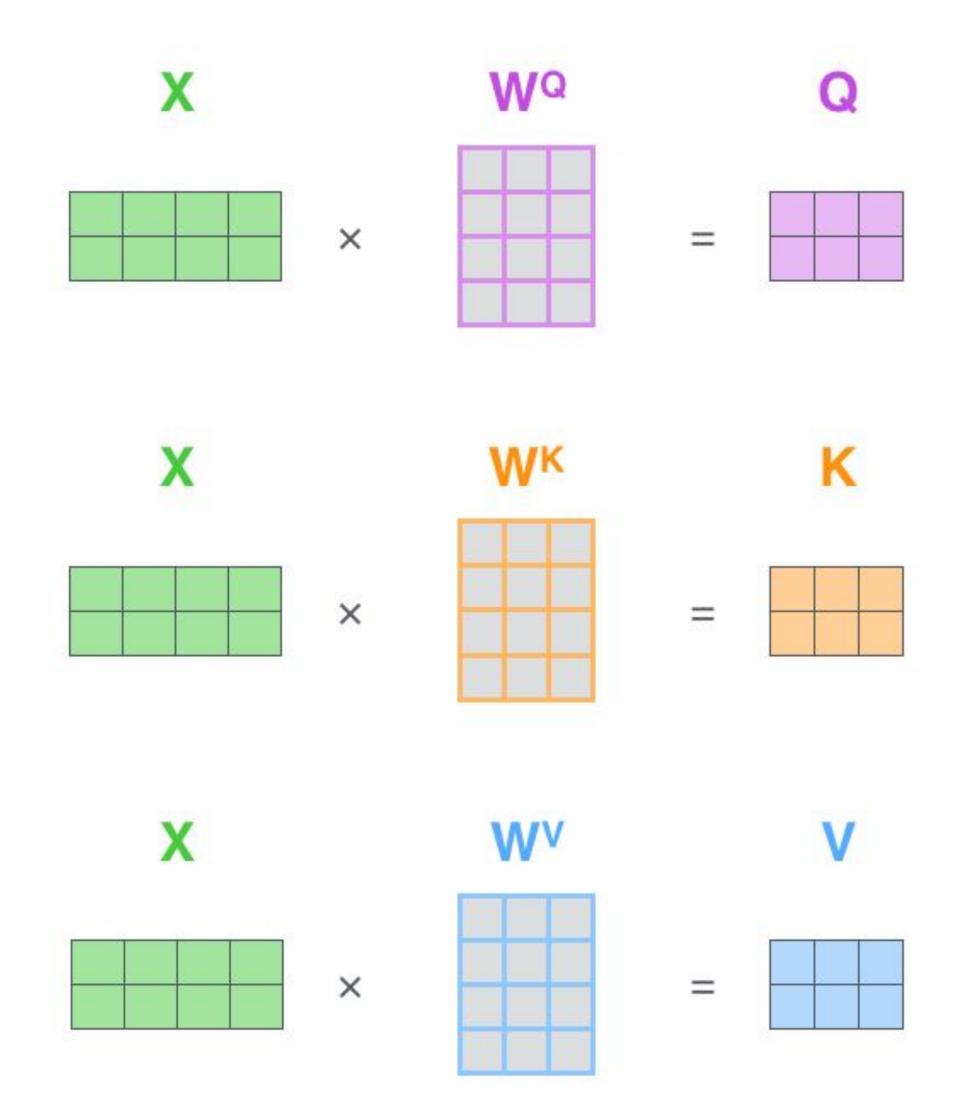


Input image source: Photo by Victor Grabarczyk on Unsplash . Diagram by author.

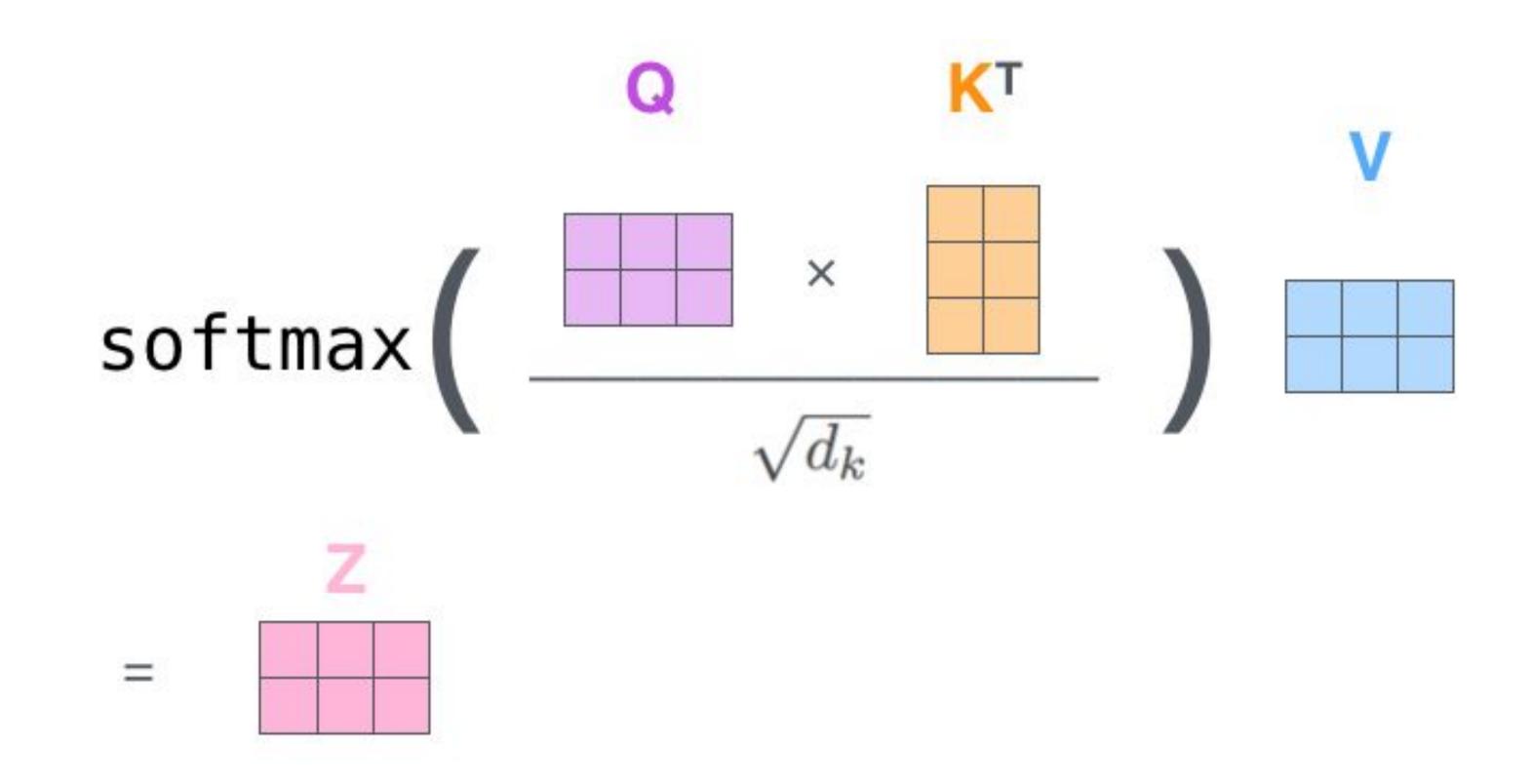
Self-Attention

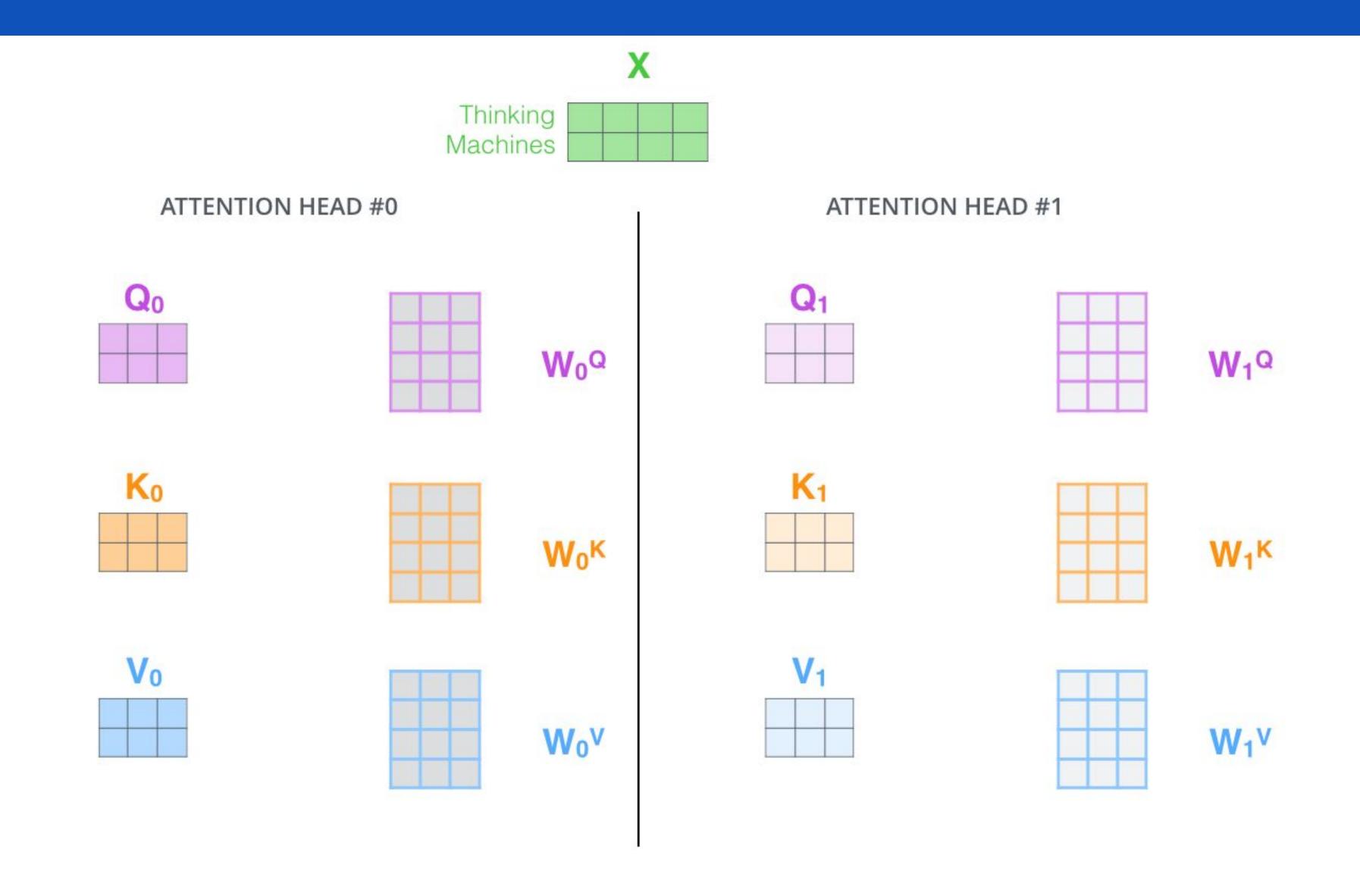


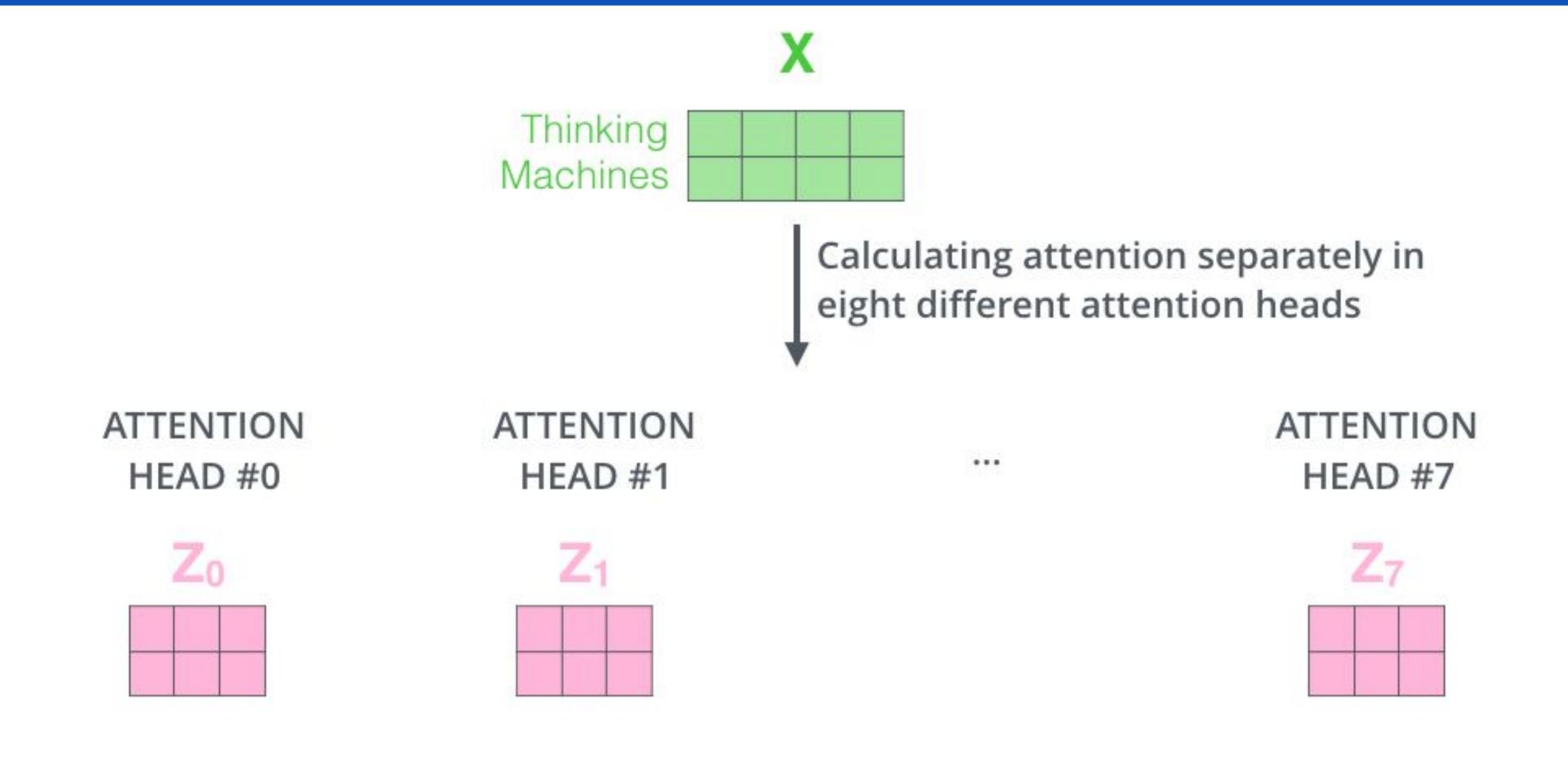
Matrix Calculation of Self-Attention



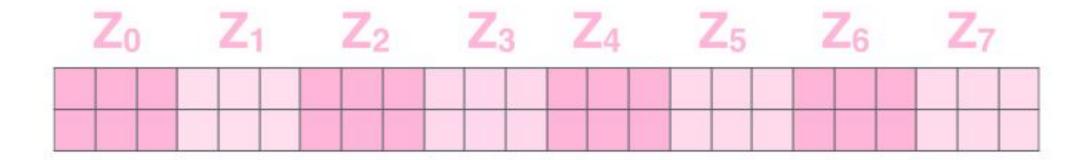
Matrix Calculation of Self-Attention







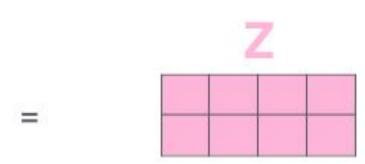
1) Concatenate all the attention heads

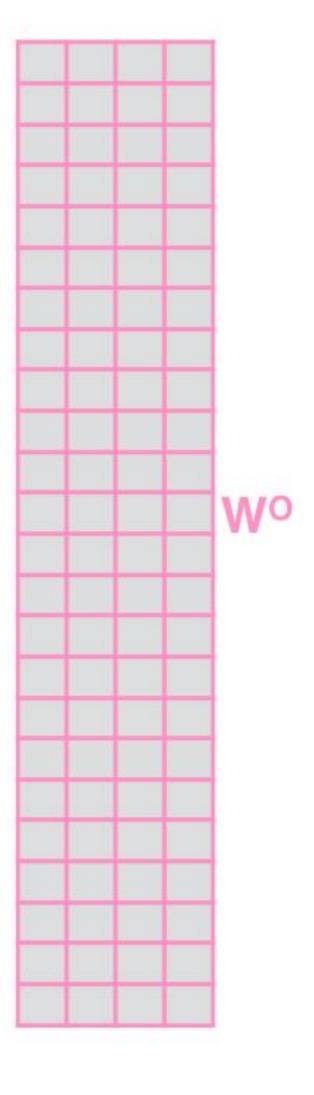


2) Multiply with a weight matrix W^o that was trained jointly with the model

X

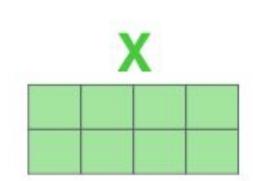
3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN



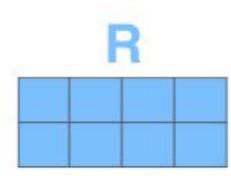


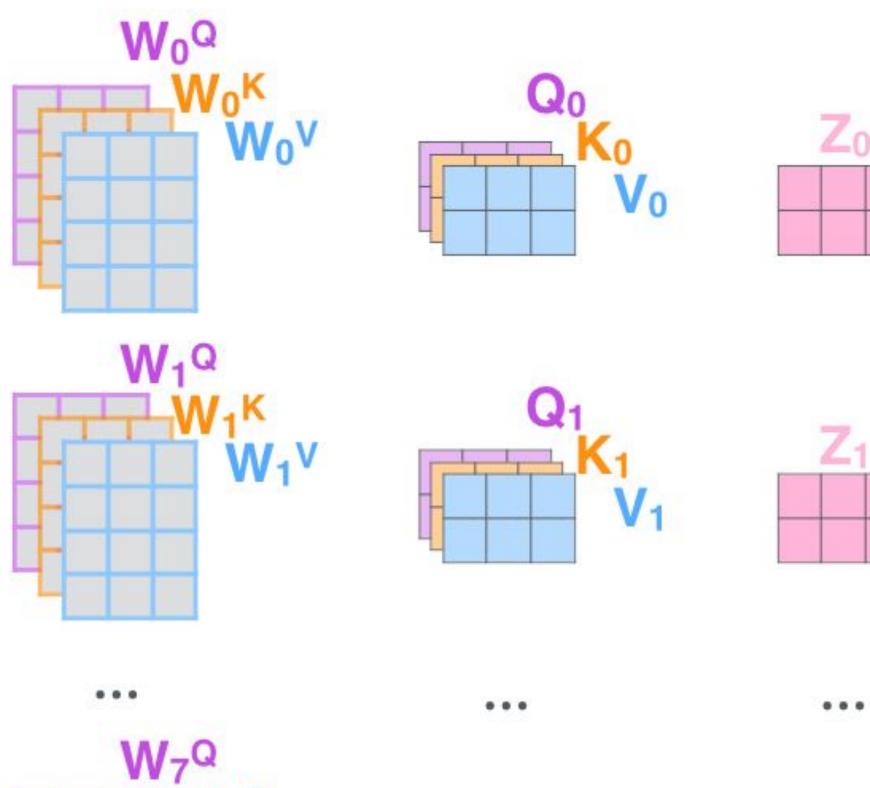
- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads.
 We multiply X or
 R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

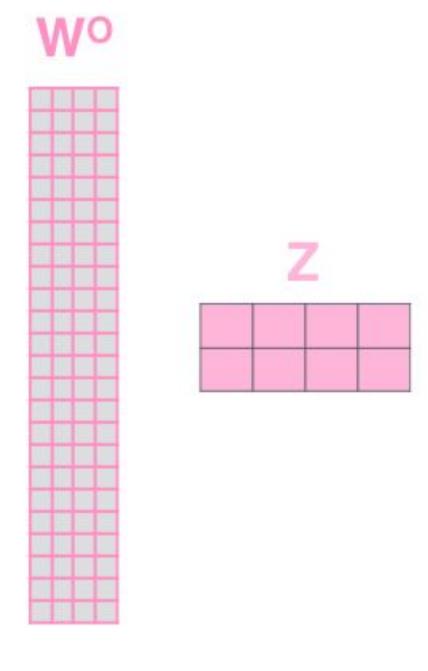
Thinking Machines

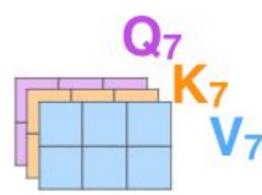


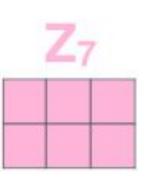
* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one



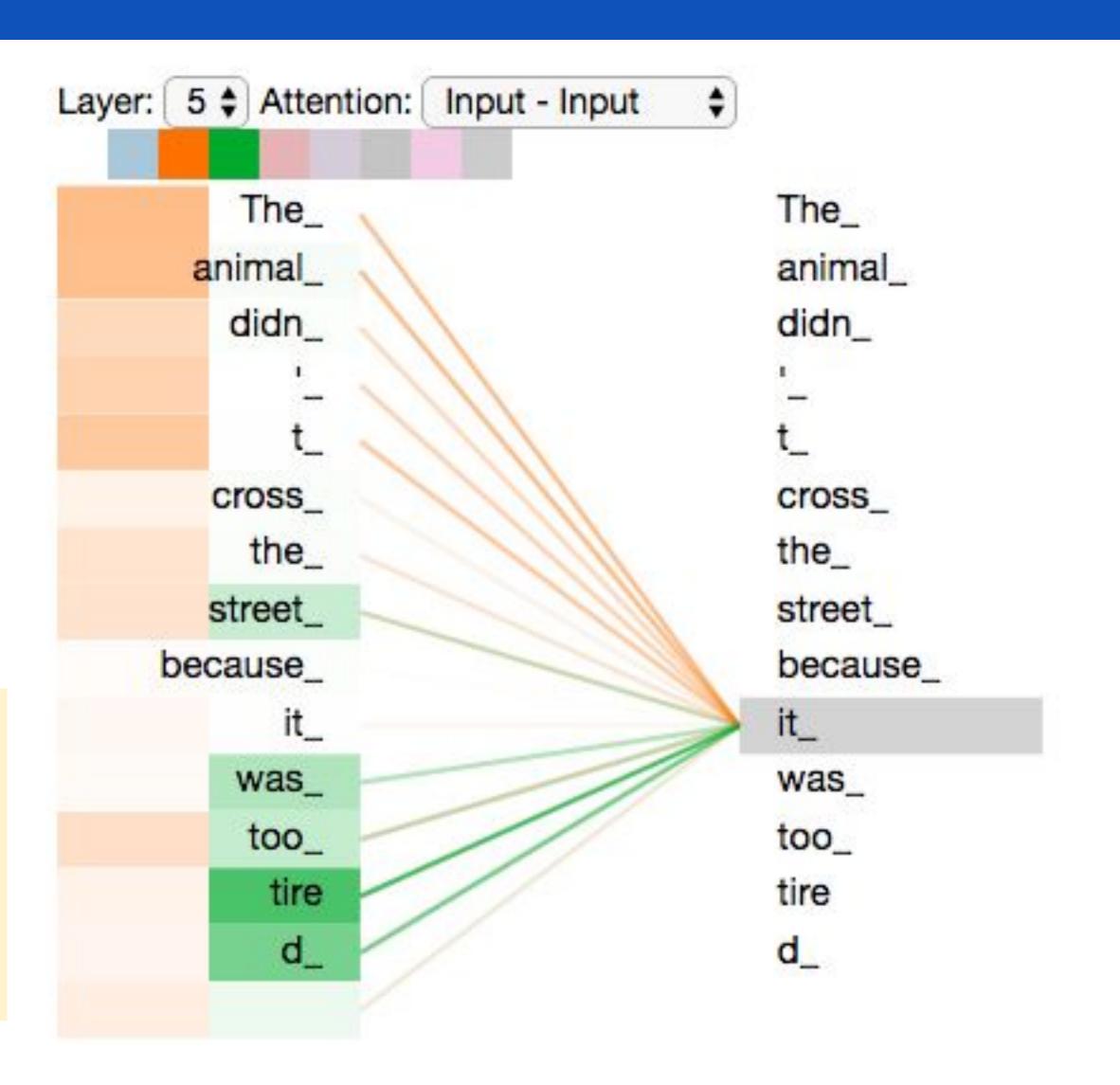


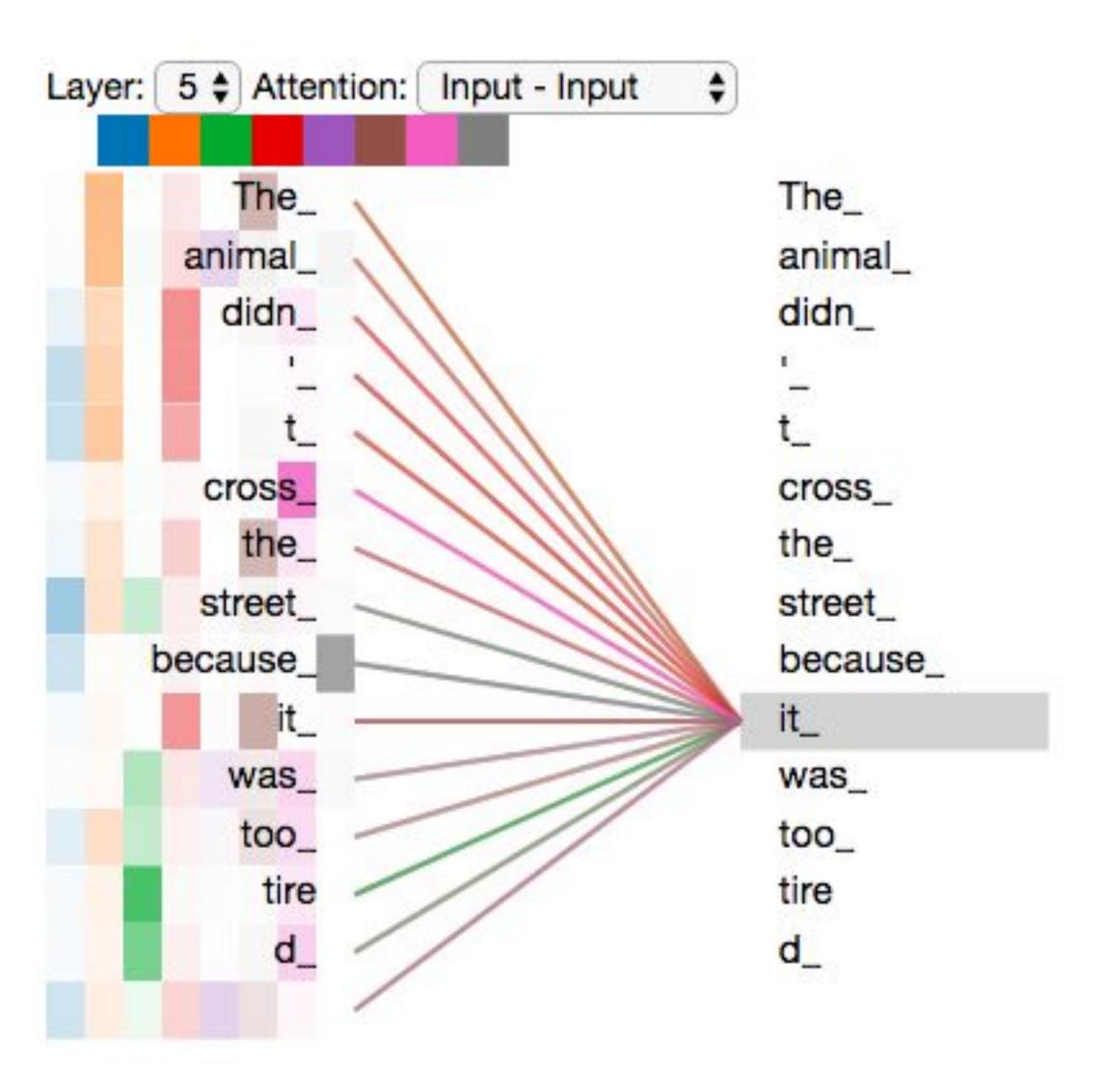






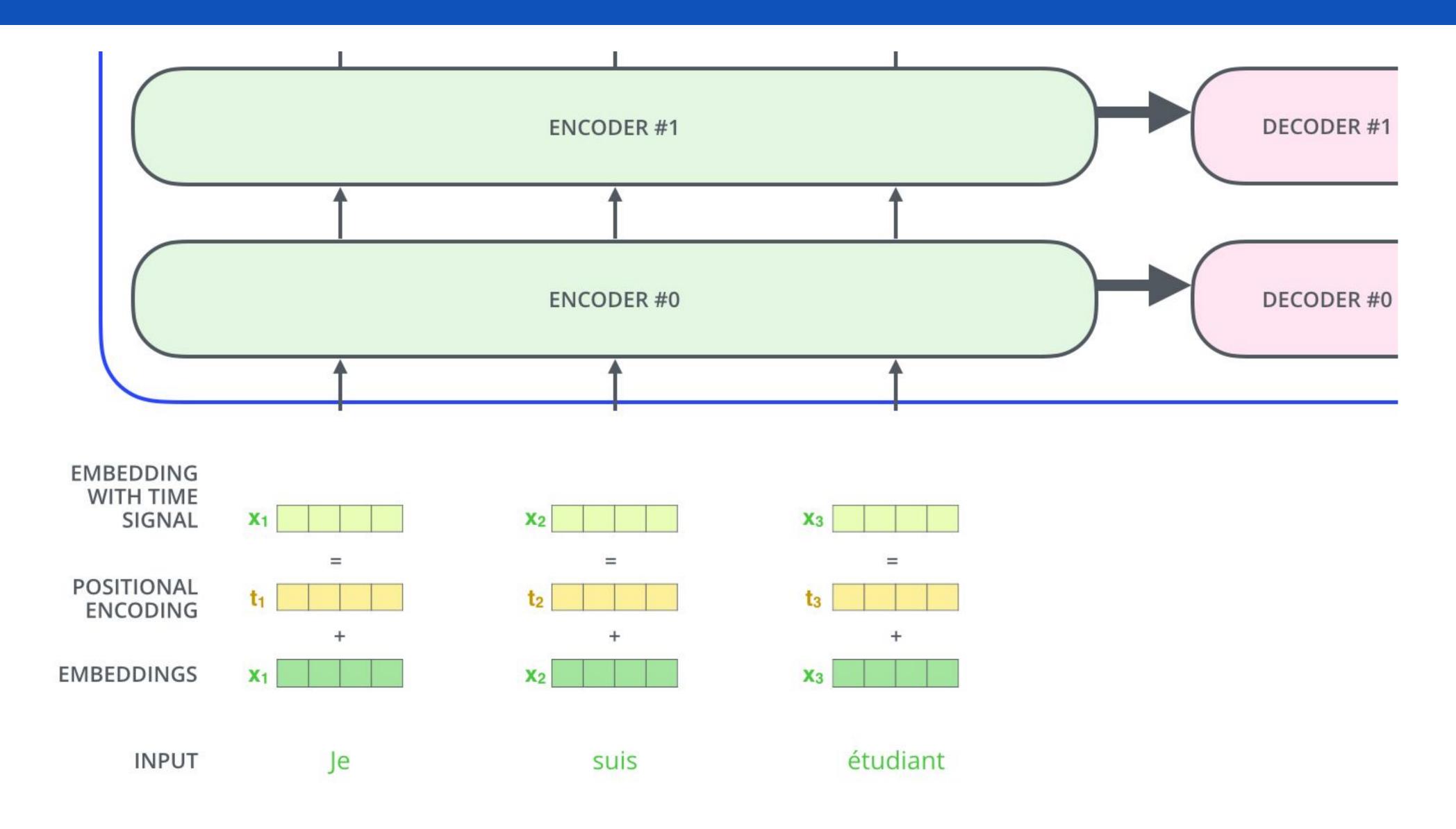
As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".



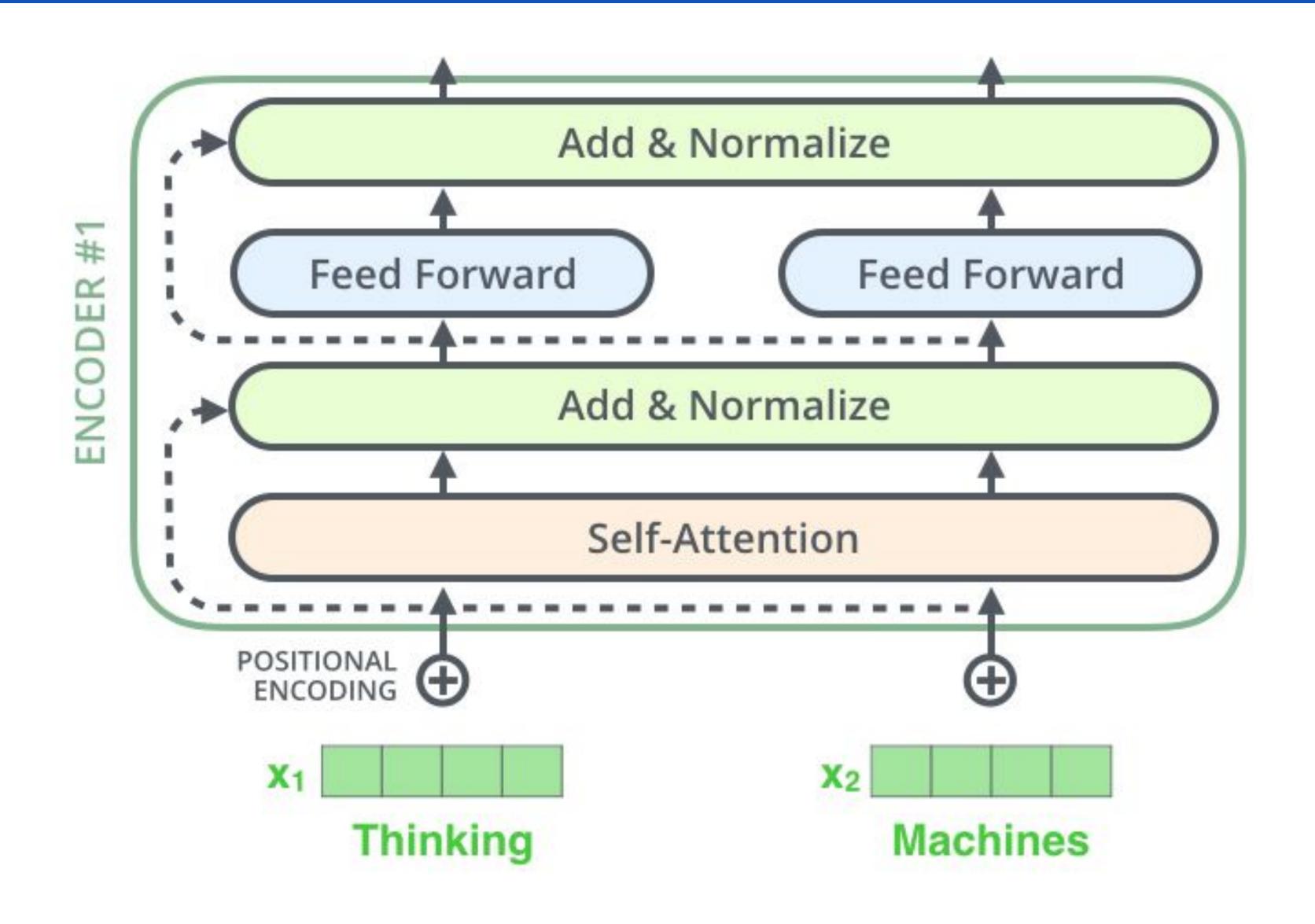


In considering the importance of the positional information of elements in sequence data, how can the Transformer model effectively utilize this positional information in its processing?

Positional Encoding

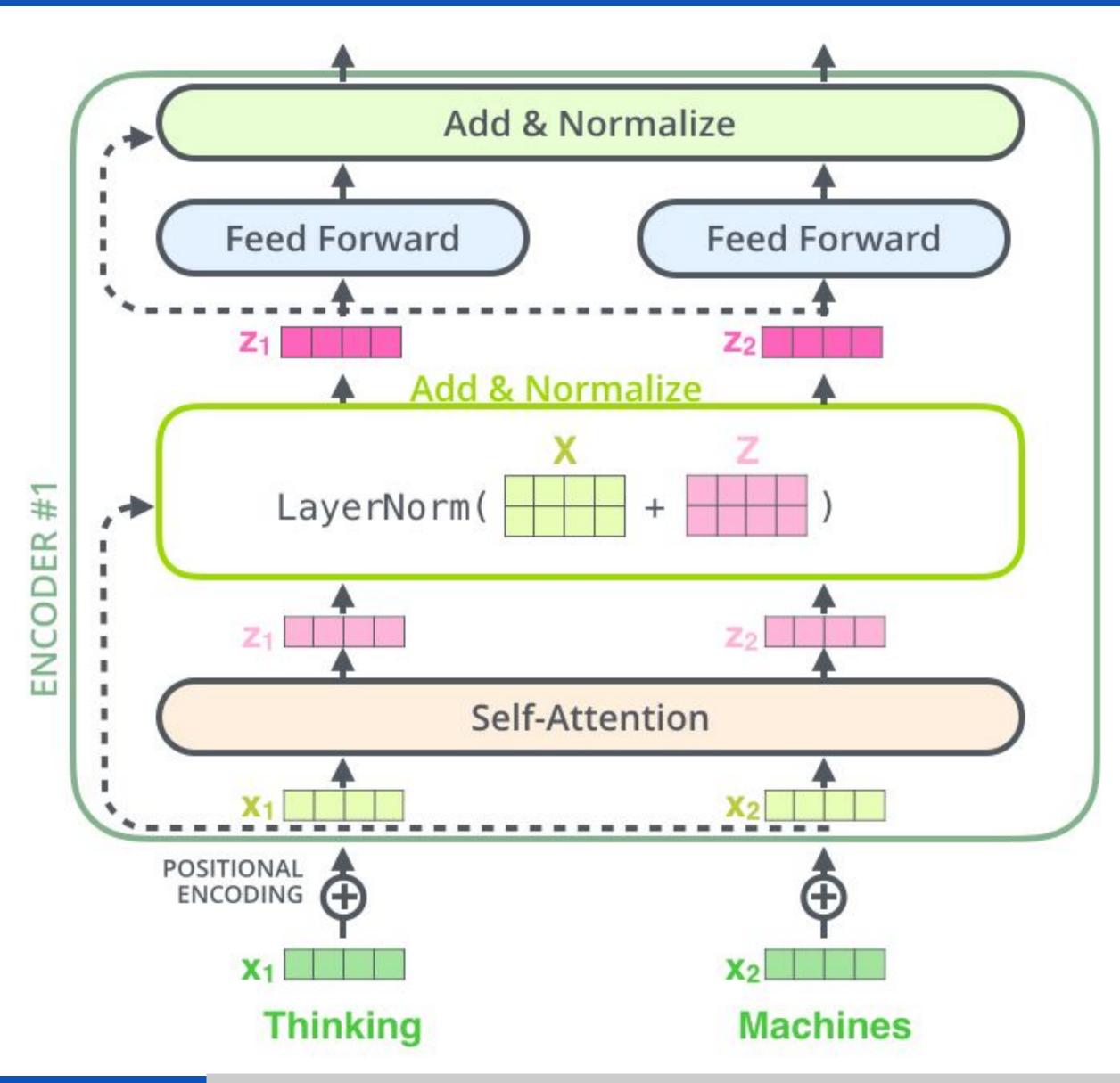


Add Residual Connections

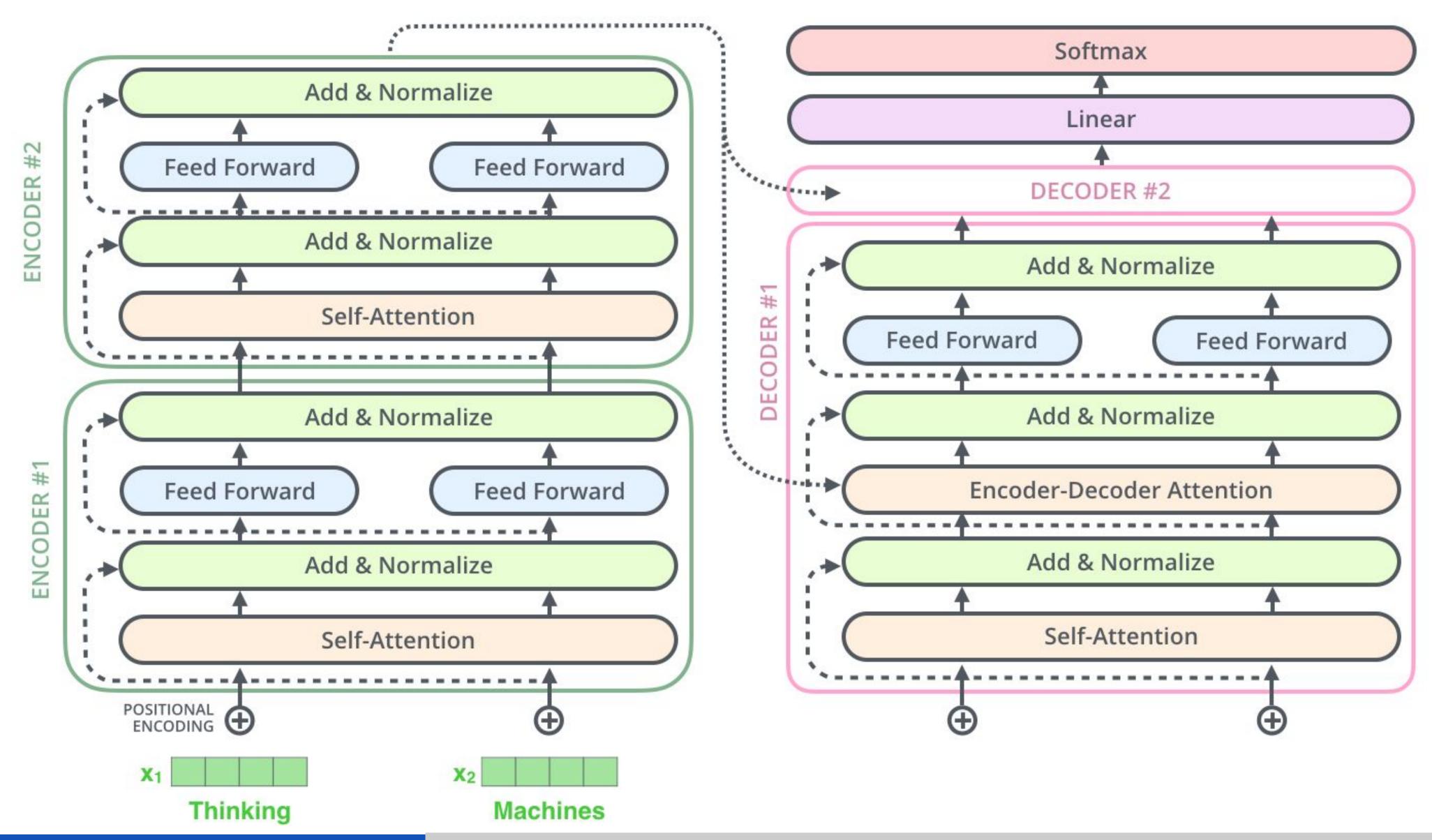


28

Layer Normalization



Encoder-Decoder



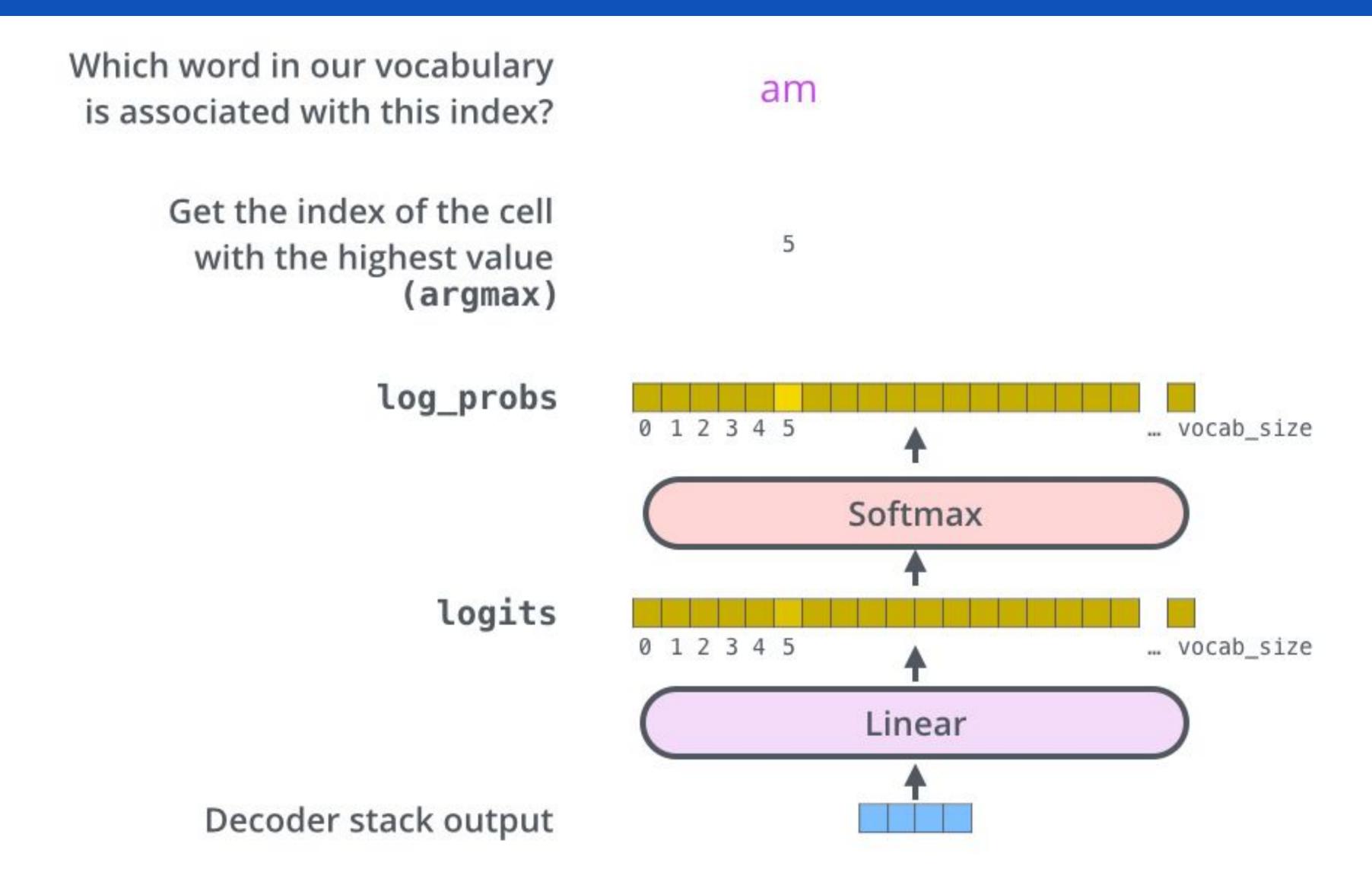
Encoder-Decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax DECODER ENCODER **ENCODER** DECODER **EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS** étudiant suis Je INPUT

Encoder-Decoder

Decoding time step: 1 (2) 3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant suis Je INPUT **OUTPUTS**

The Final Linear and Softmax Layer



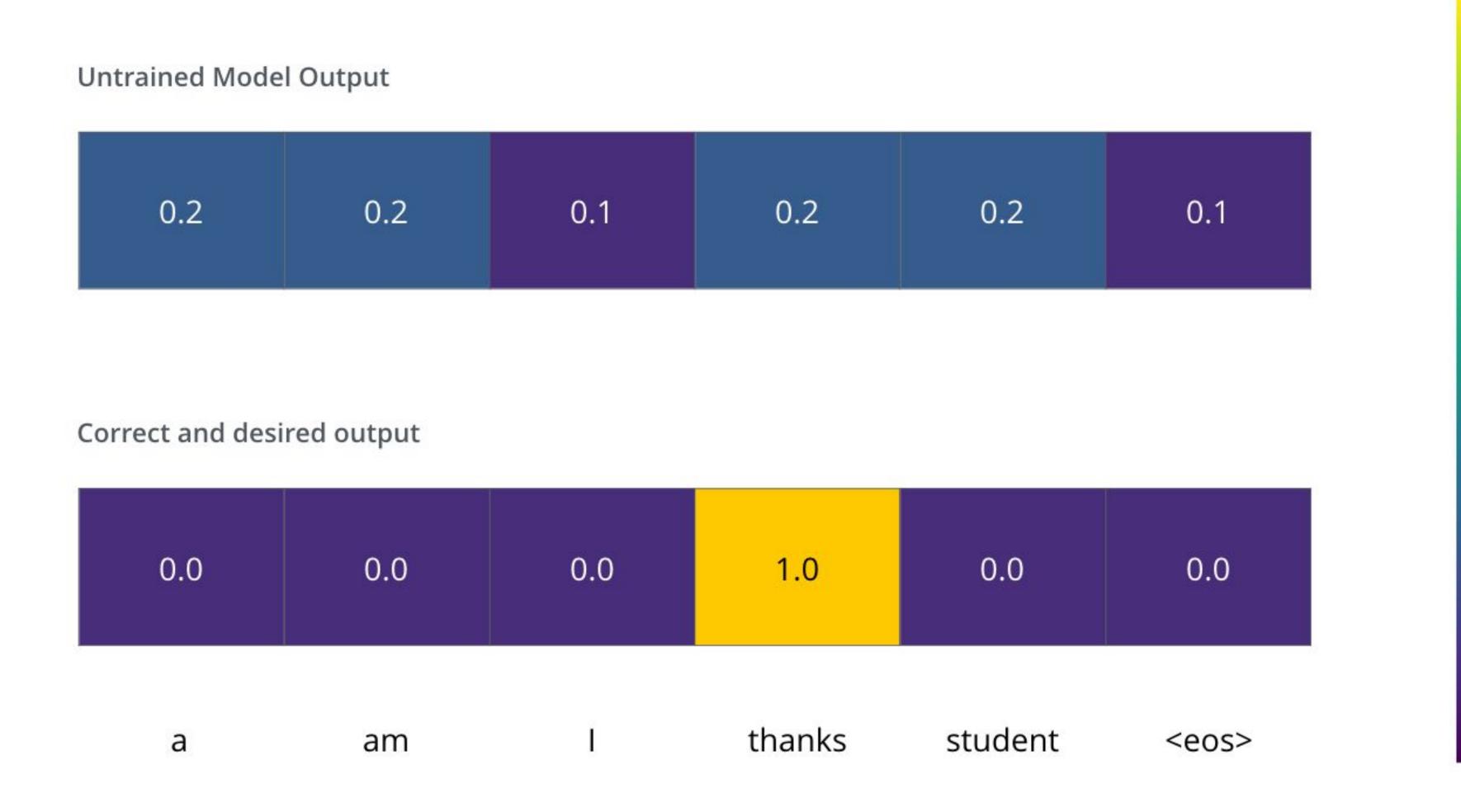
Output Vocabulary

WORD	a	am	1	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

Output Vocabulary

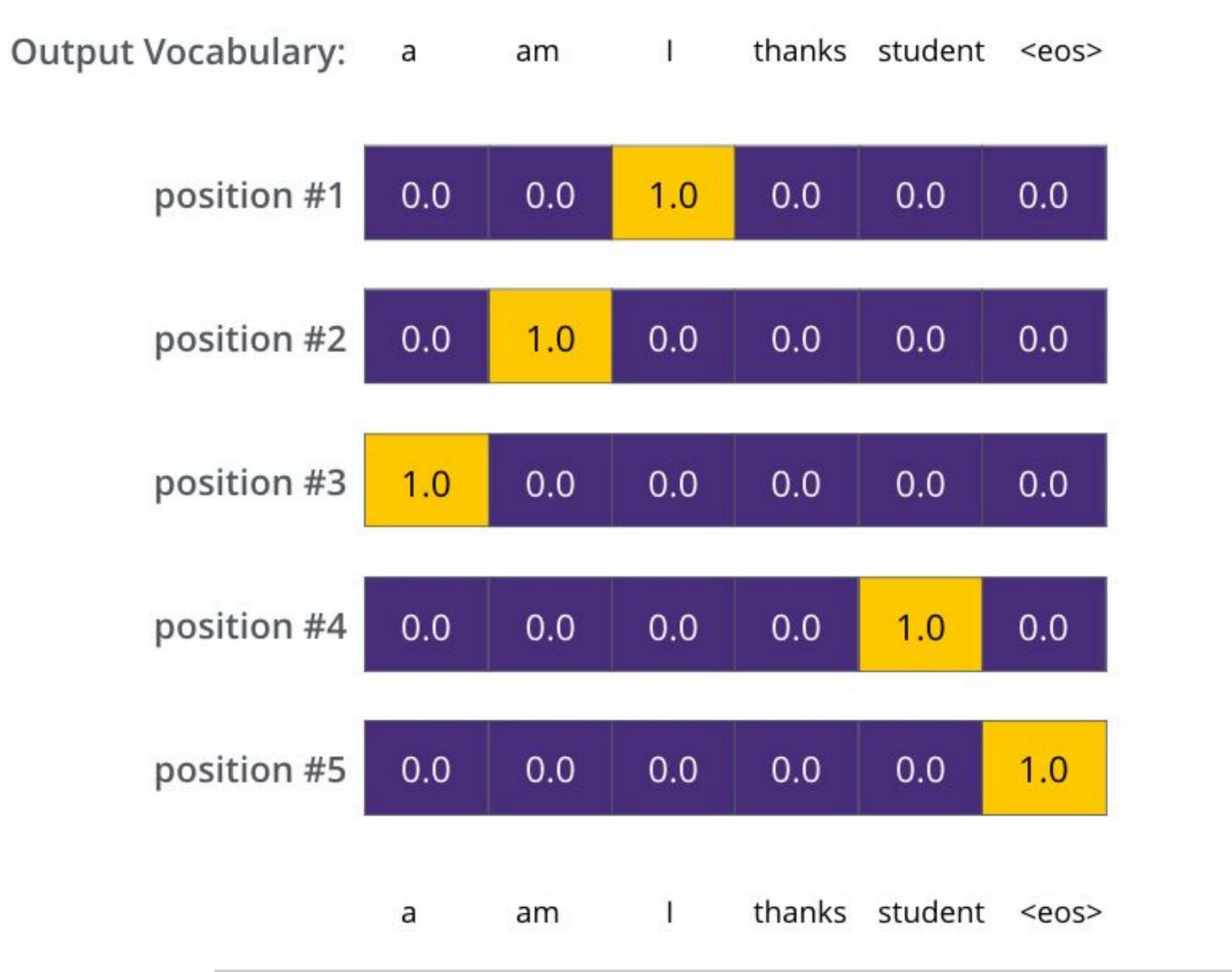
WORD	a	am	1	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"



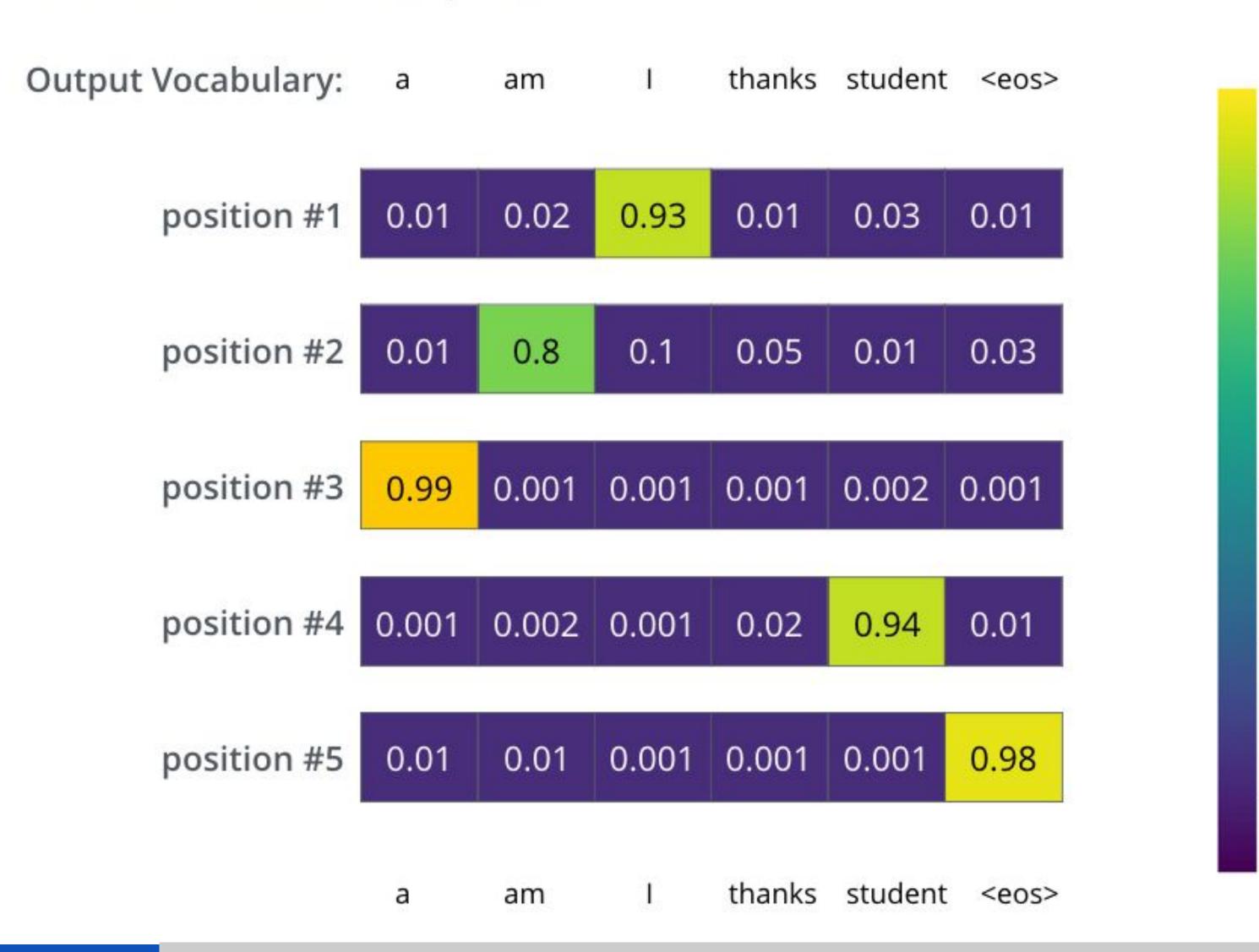
36

Target Model Outputs



Yong Zhuang Knowledge Discovery & Data Mining 37

Trained Model Outputs



Yong Zhuang Knowledge Discovery & Data Mining 38

References

- Understanding Long Short-Term Memory Networks (LSTMs) Chris Olah
- The Illustrated Transformer Jay Alammar
- Attention is all you need

39

Summary

- Transformers
 - Self-Attention, Softmax,
 - Multi-Headed
 - Self-Attention,
 - Positional Encoding,
 - Residual Connection,
 - Layer Normalization,
 - Encoder-Decoder