Knowledge Discovery & Data Mining - Clustering -Yong Zhuang

Yong Zhuang

- Supervised Learning
 - Data: both the features, x, and a target, y, for each item in the dataset
 - Goal: 'learn' how to predict the target from the features, y = f(x)
 - Example: Regression and Classification
- Unsupervised Learning
 - Data: Only the features, x, for each item in the dataset
 - Goal: discover 'interesting' things about the dataset
 - Example: Clustering, Dimensionality reduction, Principal Component Analysis (PCA)

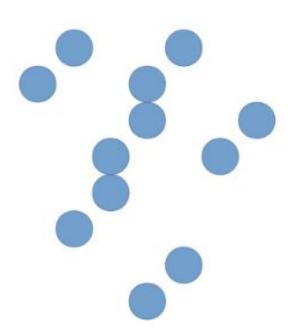
Outline

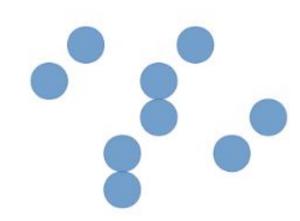
Introduction to Clustering

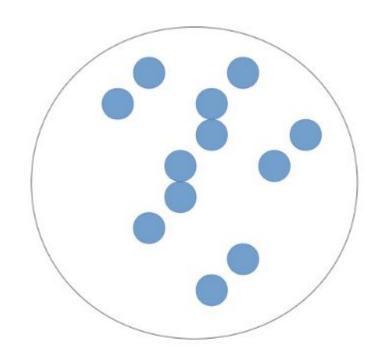
- K-Means
 - K-Means Algorithm
 - Limitation of K-Means
 - K-Means Implementation
- Agglomerative Clustering

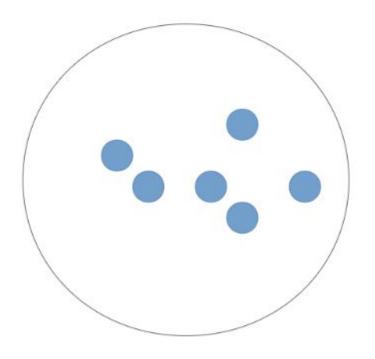
- Clustering is the task of discovering unknown subgroups in data, or clusters
- The goal is to partition the dataset into clusters where 'similar' items are in the same cluster and 'dissimilar' items are in different clusters
- Example:
 - Social Network Analysis: Clustering can be used to find communities
 - Ecology: cluster organisms that share attributes into species, genus, etc...
 - Handwritten digits where the digits are unknown

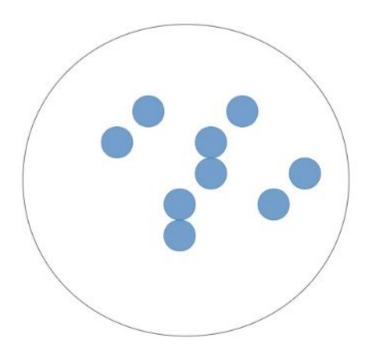
Question: What is the difference between Clustering and Classification?

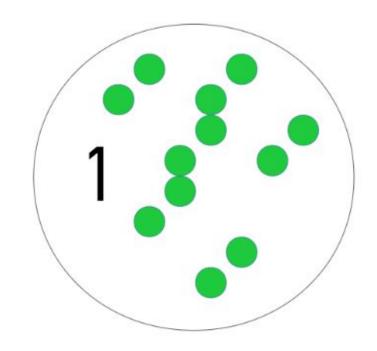


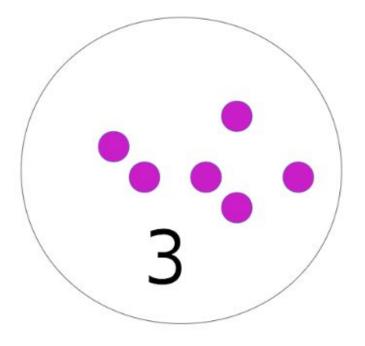


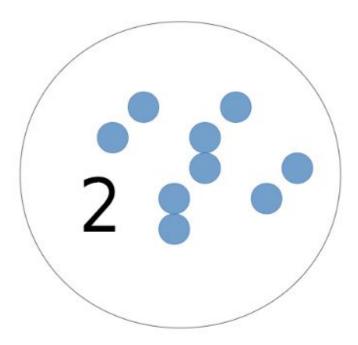


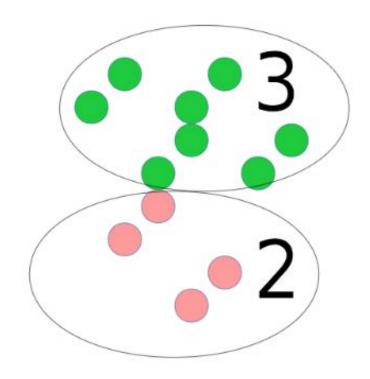


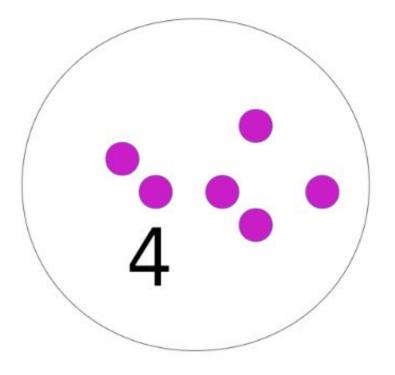


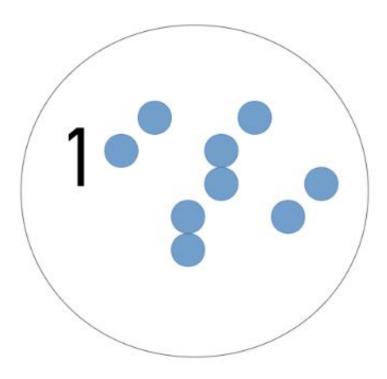












Summary of Clustering

- Partition data into groups (clusters)
- Points within a cluster should be "similar".
- Points in different cluster should be "different".

Goal of Clustering

- Data Exploration
 - Are there coherent groups ?
 - How many groups are there ?
- Data Partitioning
 - Divide data by group before further processing

Outline

- Introduction to Clustering
- K-Means
 - K-Means Algorithm
 - Limitation of K-Means
 - K-Means Implementation
- Agglomerative Clustering

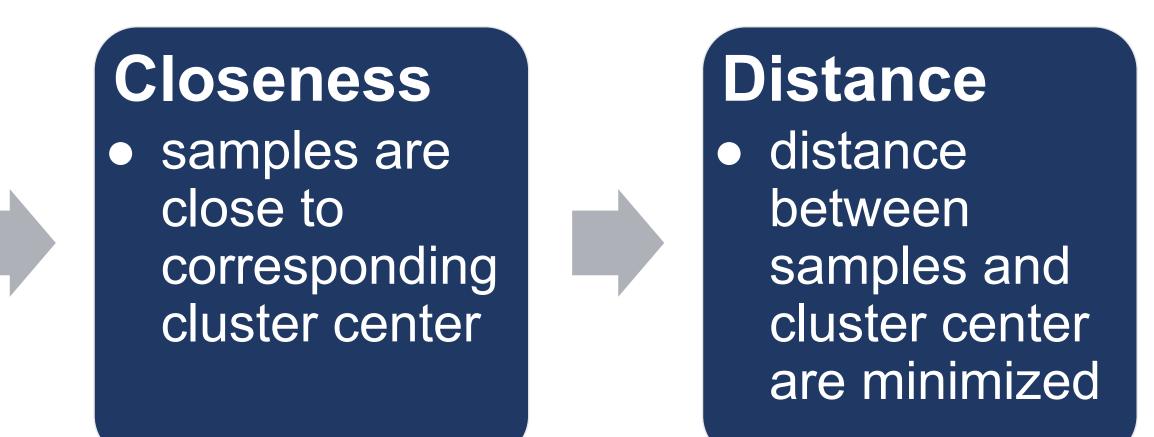
Partitioning-based Clustering Problem

- Data: A collection of samples x_i , for i = 1, ..., n, where $x_i \in \mathbb{R}^d$
- Partition samples into K clusters, so that each cluster is as much cohesive as possible.

Similarity

• samples within cluster are similar to the cluster center

Question: How do we define the "cohesion" of a cluster?



K-Means: Objective Function

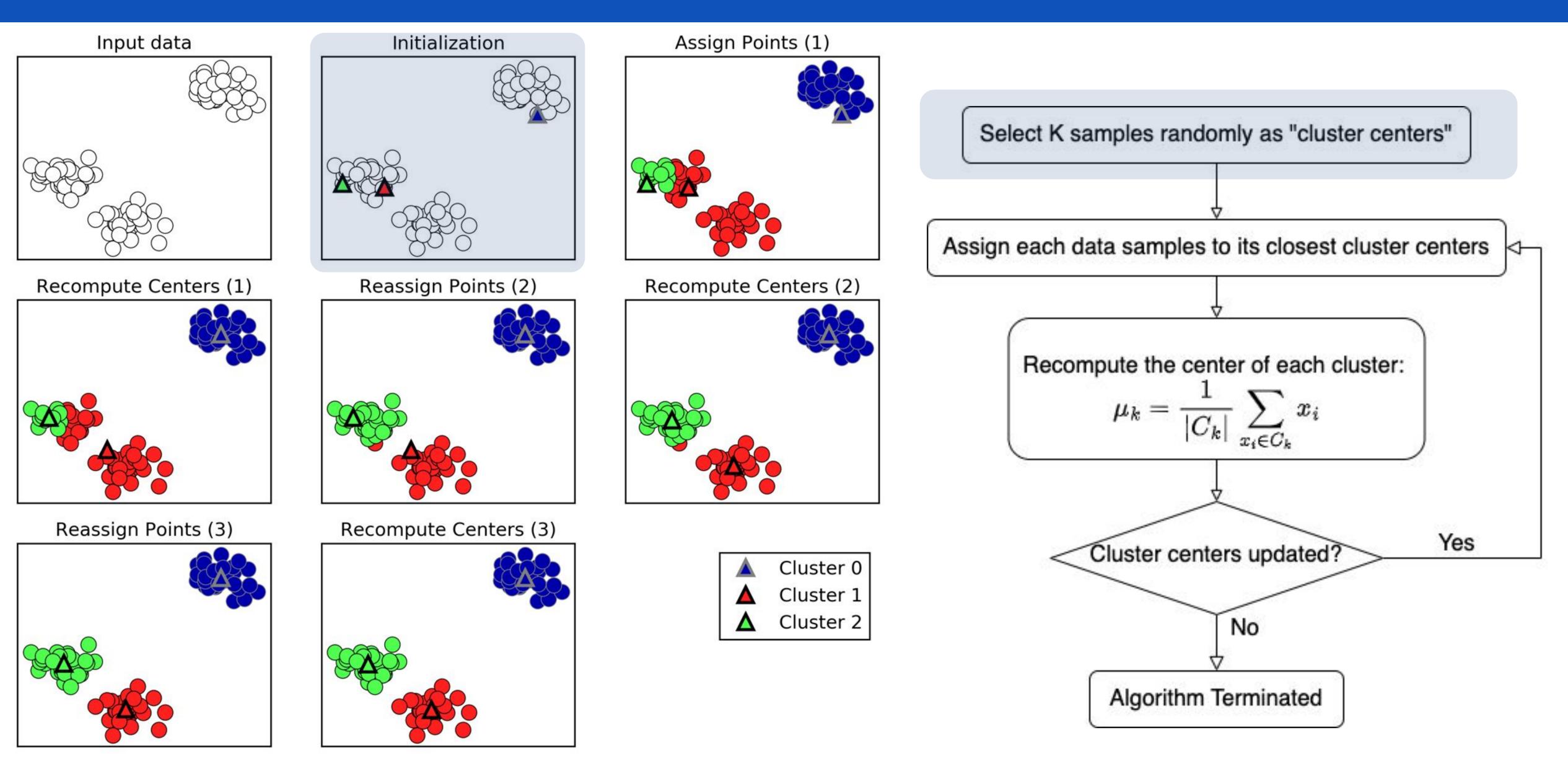
 Assign each sample x_i to its closest cluster C_k with center μ_k, as to minimize the total within-cluster distance:

- Where *d* can be any distance/dissimilarity functions.
- In general, we suppose the data is on a Euclidean space. Then our objective is to minimize the following formula:

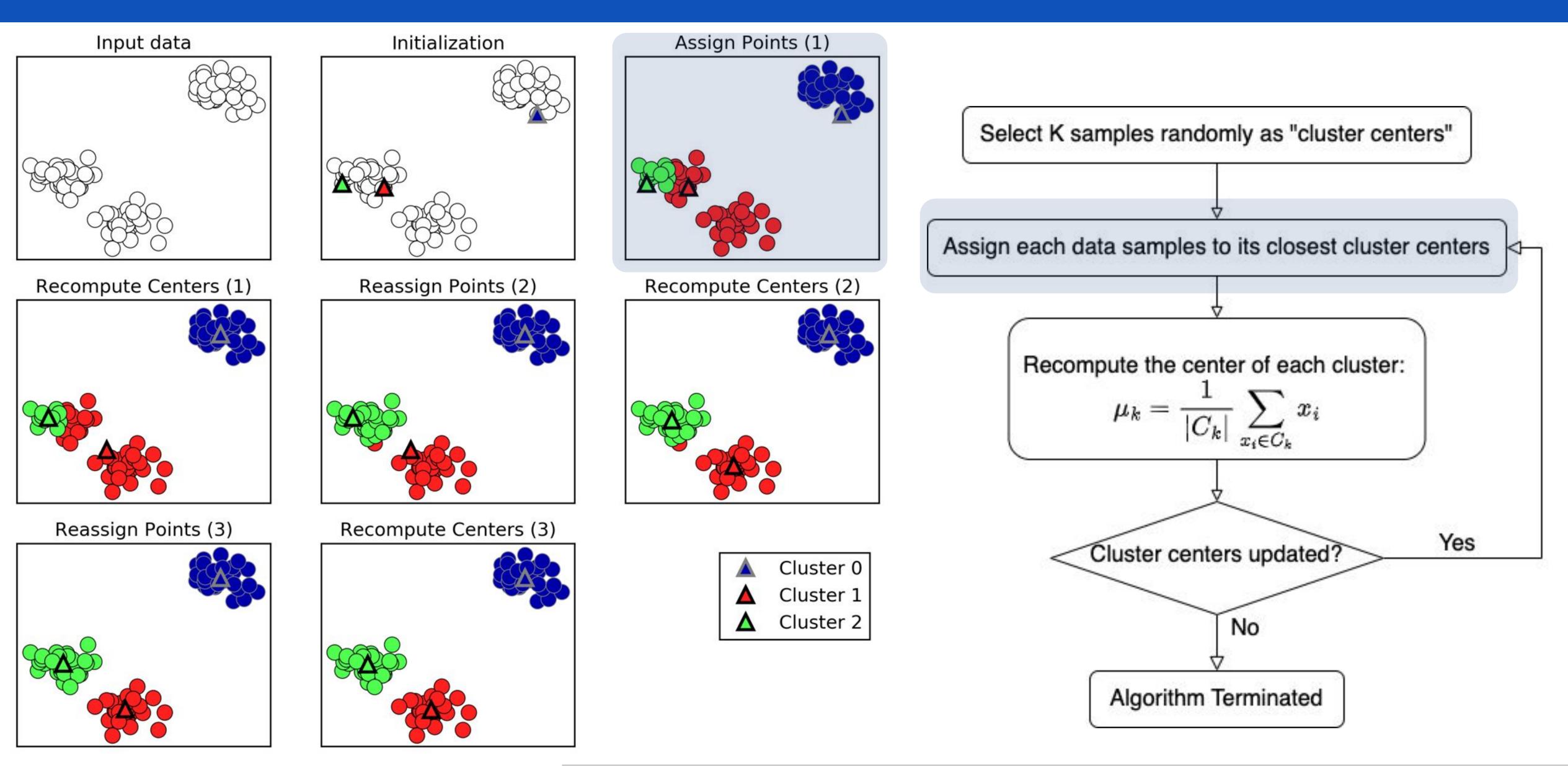
- We minimize the within-cluster Sum of Squared Error (SSE).
- For each point, the error is the distance to its nearest cluster center.

$$\sum_{1} \sum_{x_i \in C_k} d(x_i, \mu_k)^2$$

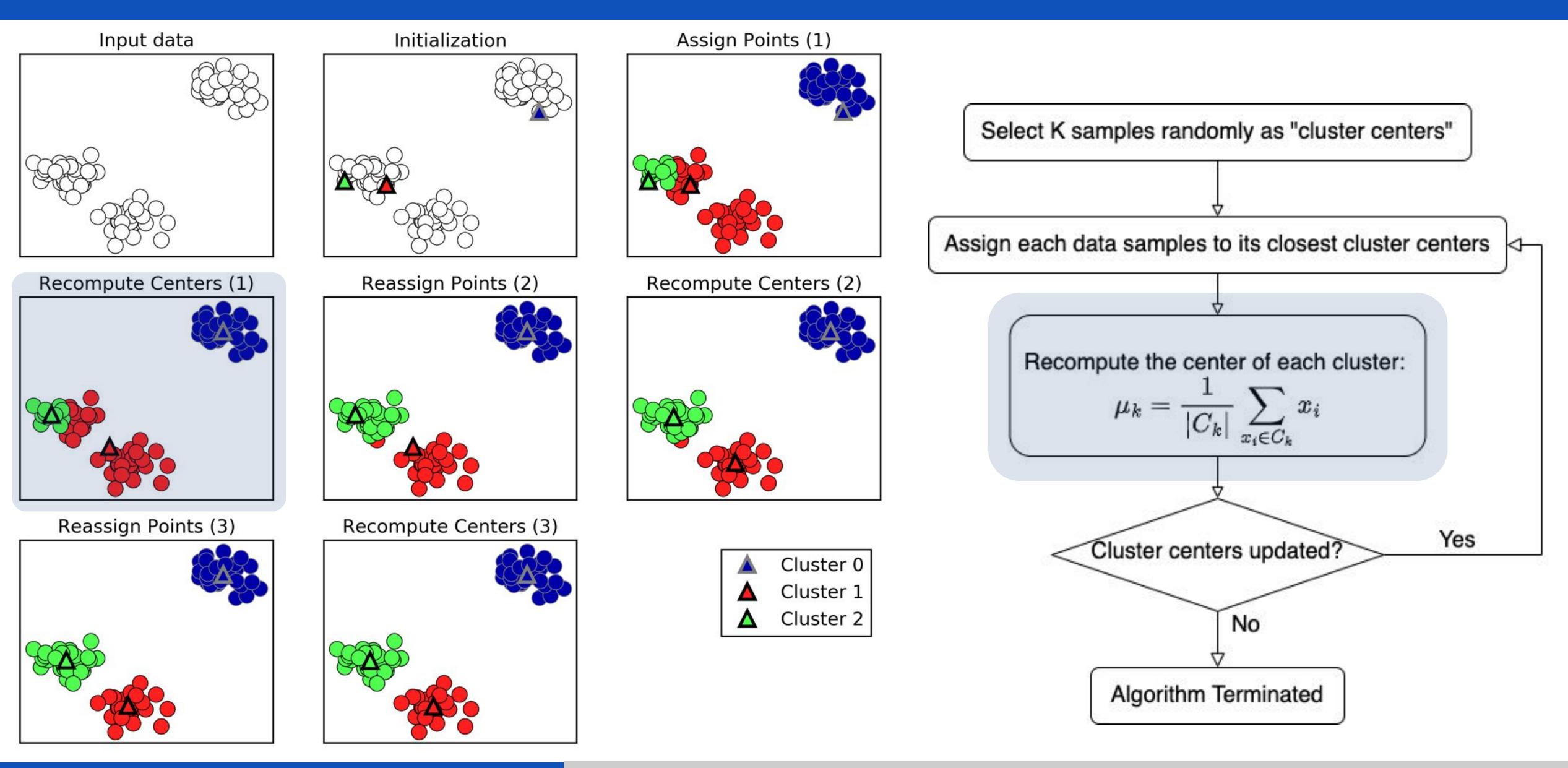
$$\sum_{i=1}^{K} \sum_{x_i \in C_k} ||x_i - \mu_k||^2$$



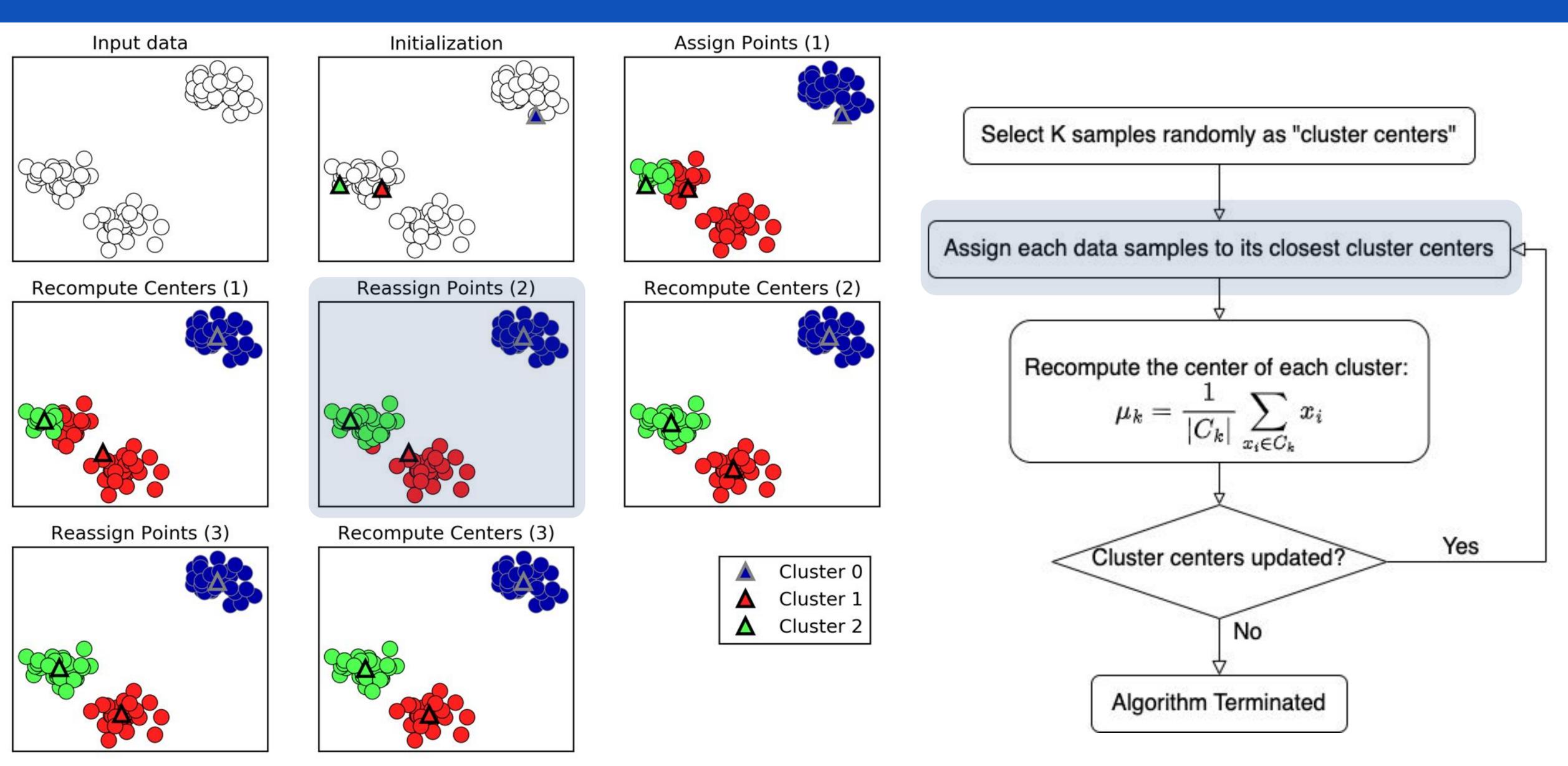
Yong Zhuang



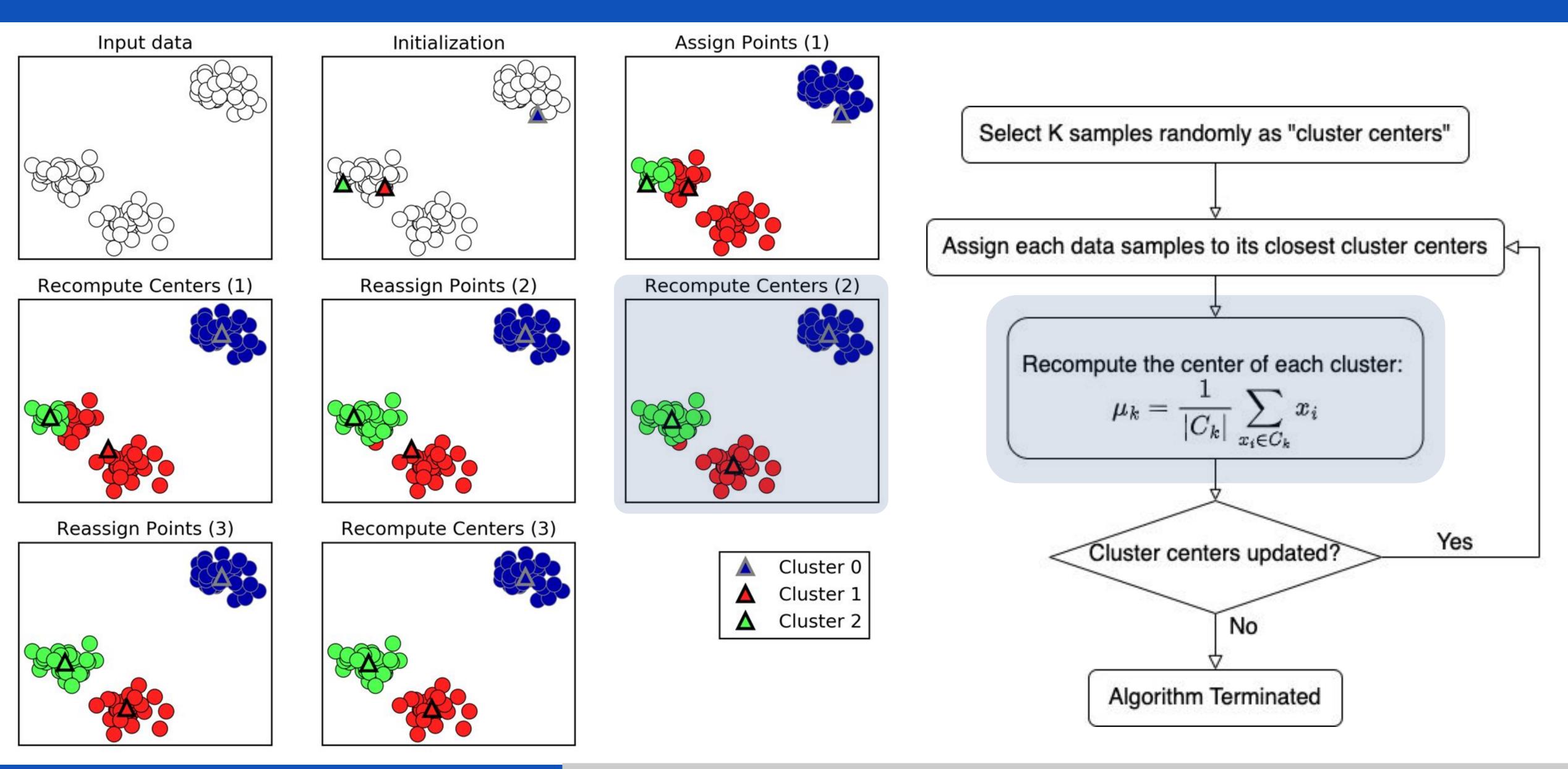
Yong Zhuang



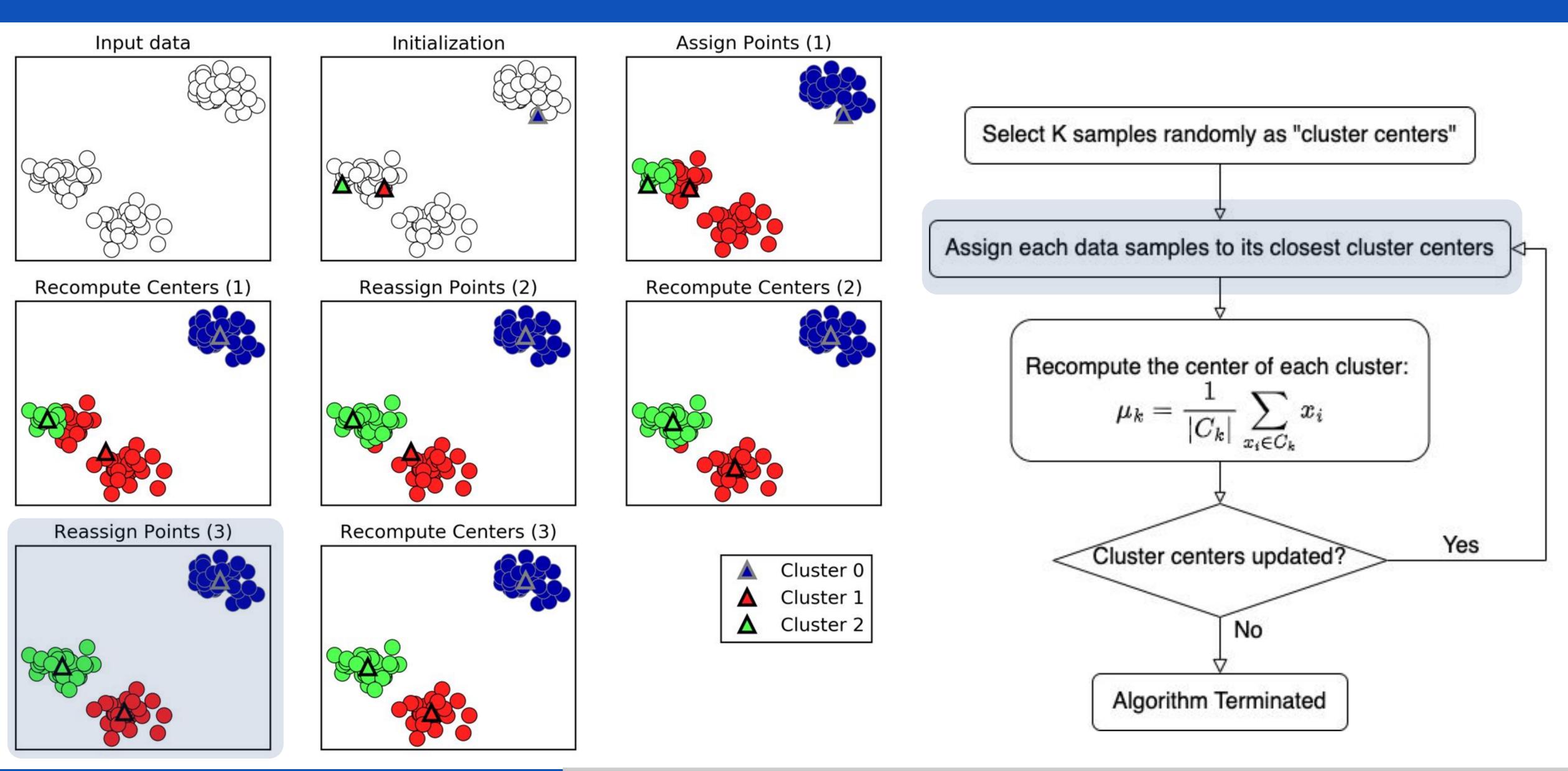
Yong Zhuang



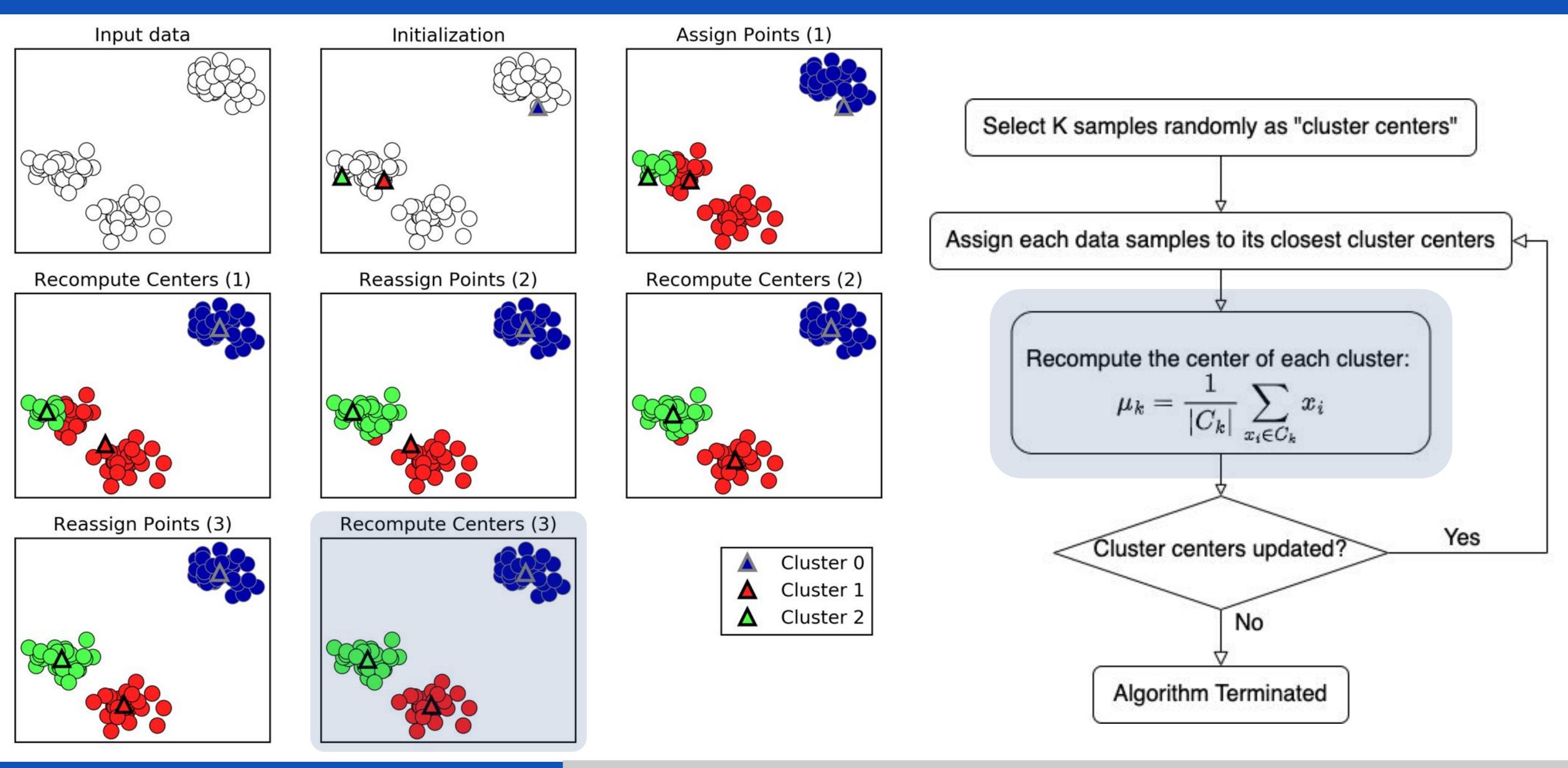
Yong Zhuang



Yong Zhuang



Yong Zhuang

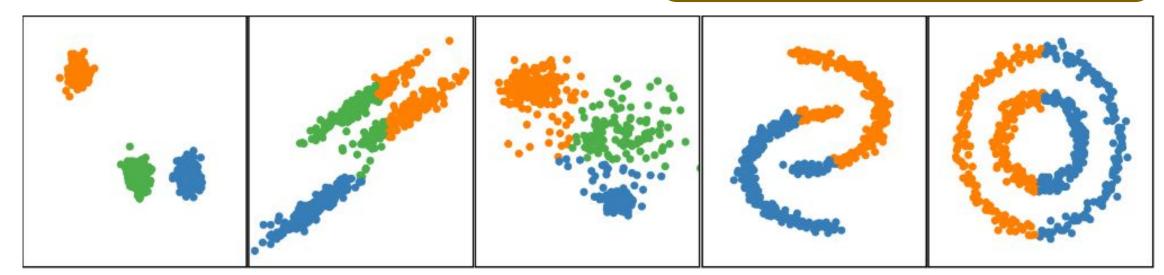


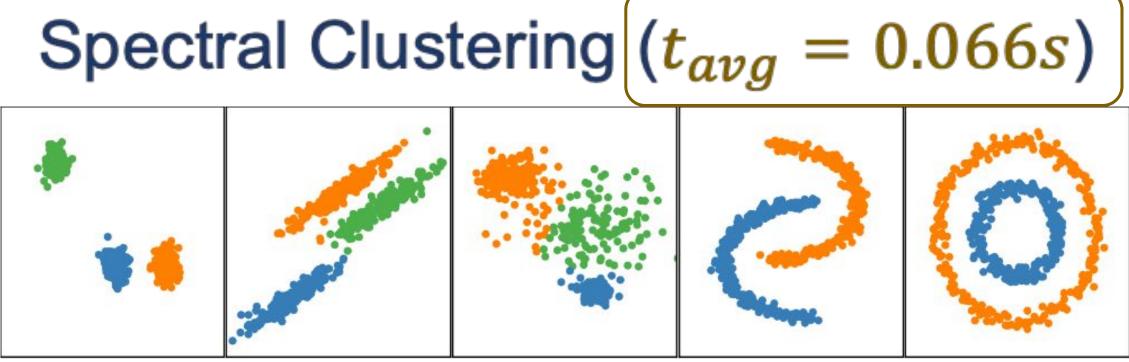
Yong Zhuang

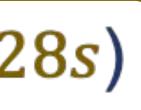
Outline

- Introduction to Clustering
- K-Means
 - K-Means Algorithm
 - Limitation of K-Means
 - K-Means Implementation
- Agglomerative Clustering

k-means Clustering $(t_{avg} = 0.028s)$

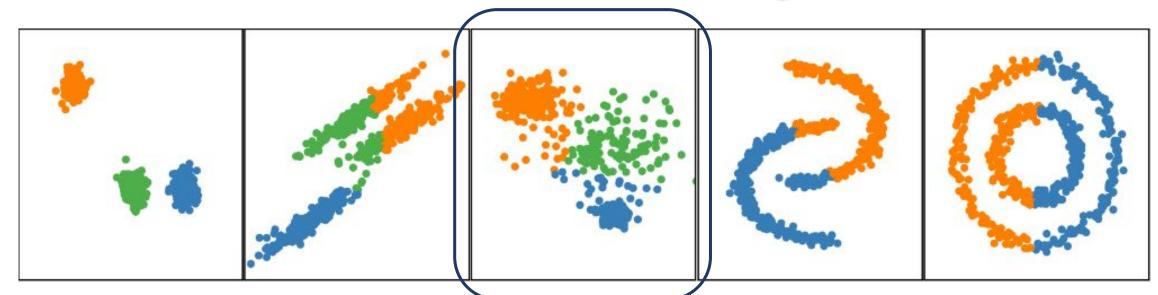




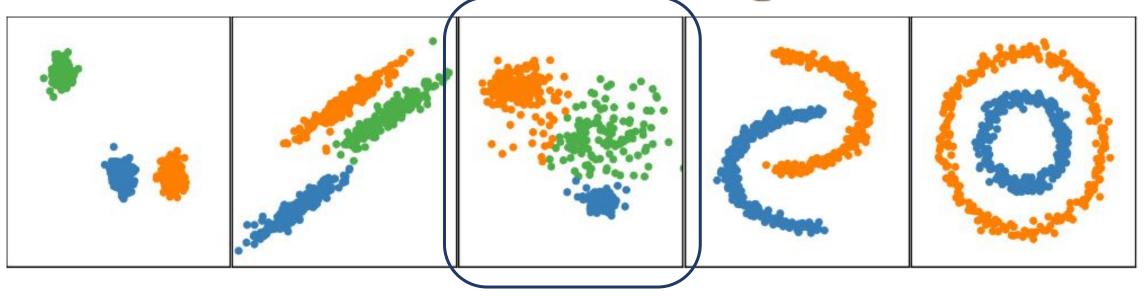


Strengths: 1. Simple and Efficient.

k-means Clustering ($t_{avg} = 0.028s$)



Spectral Clustering ($t_{avg} = 0.066s$)

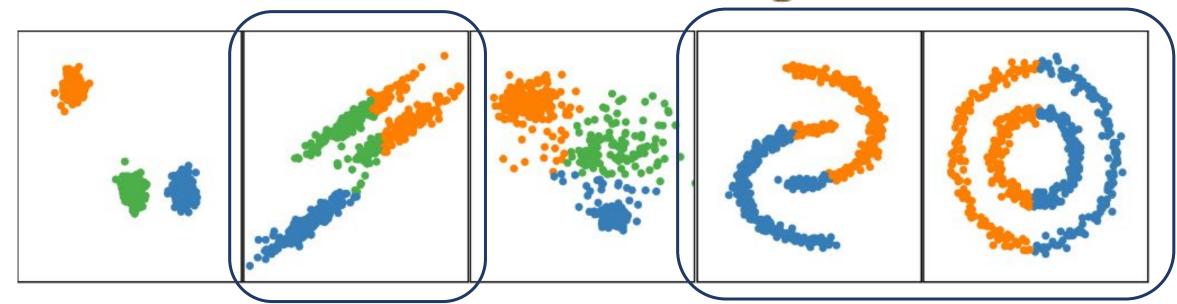


Strengths: 1. Simple and Efficient.

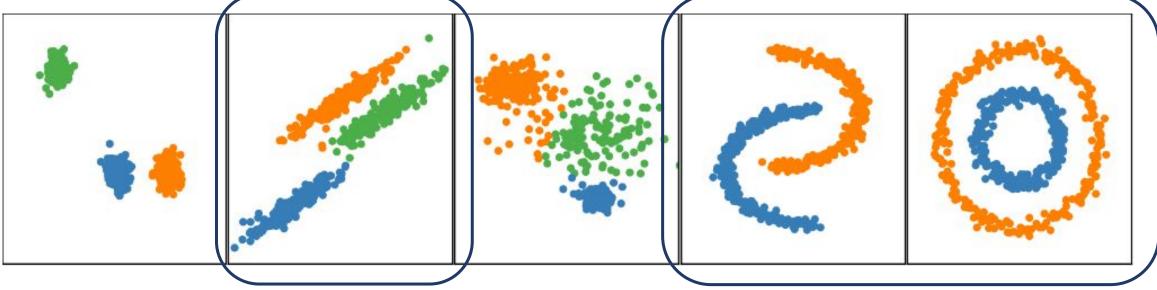
Weaknesses:

1. Clusters with different sizes and densities.

k-means Clustering ($t_{avg} = 0.028s$)



Spectral Clustering ($t_{avg} = 0.066s$)



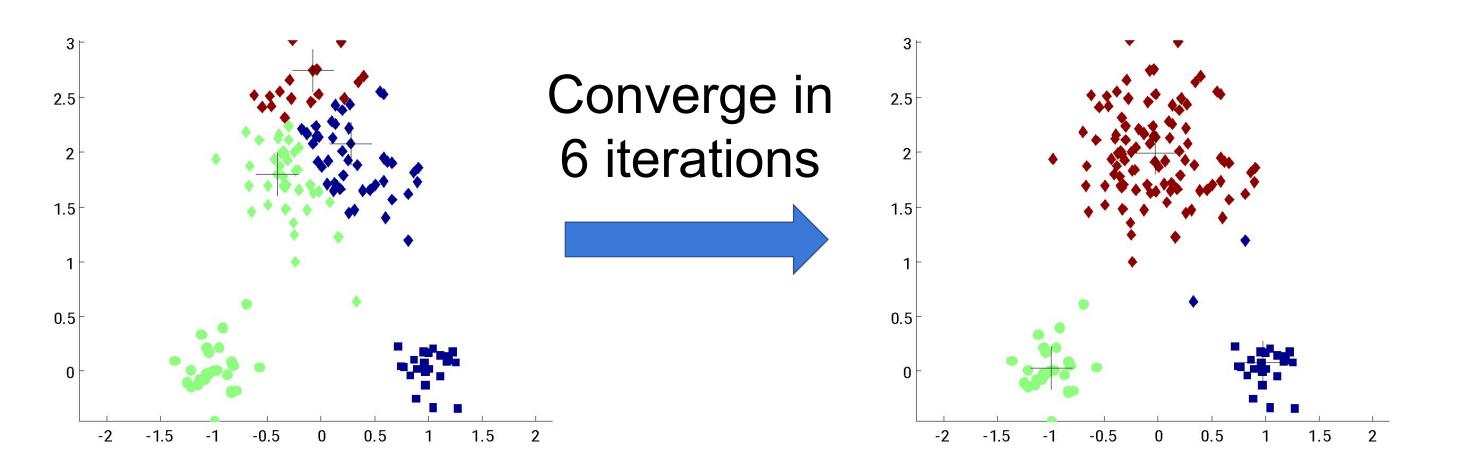
Yong Zhuang

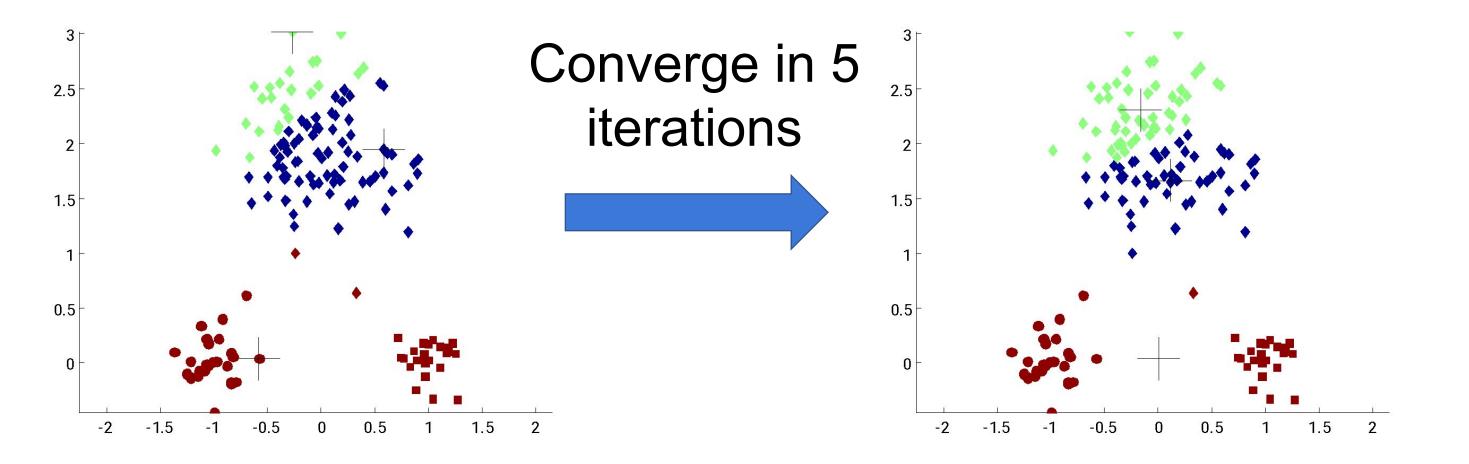
Strengths:

1. Simple and Efficient.

Weaknesses:

- 1. Clusters with different sizes and densities.
- 2. Non-spherical clusters.





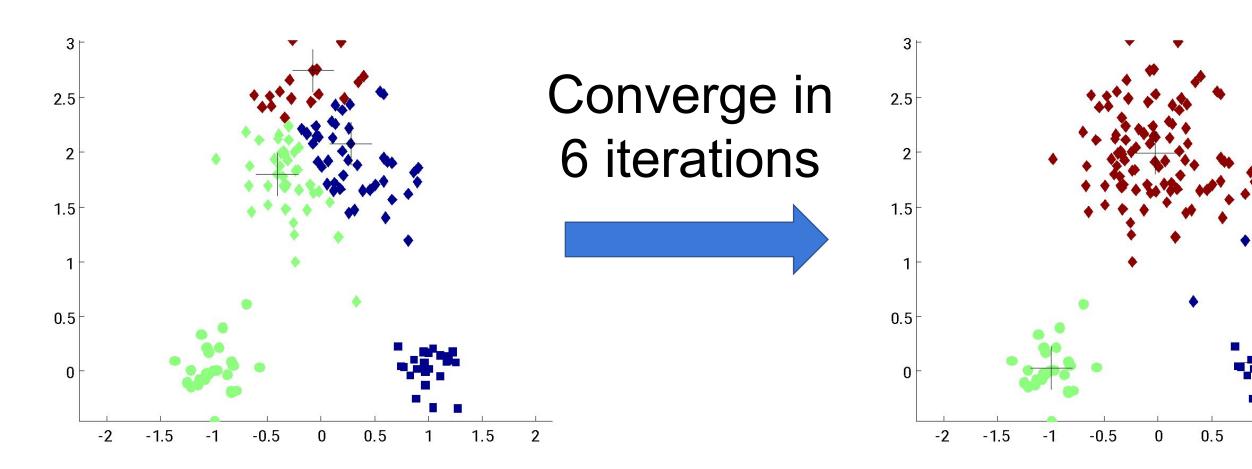
Yong Zhuang

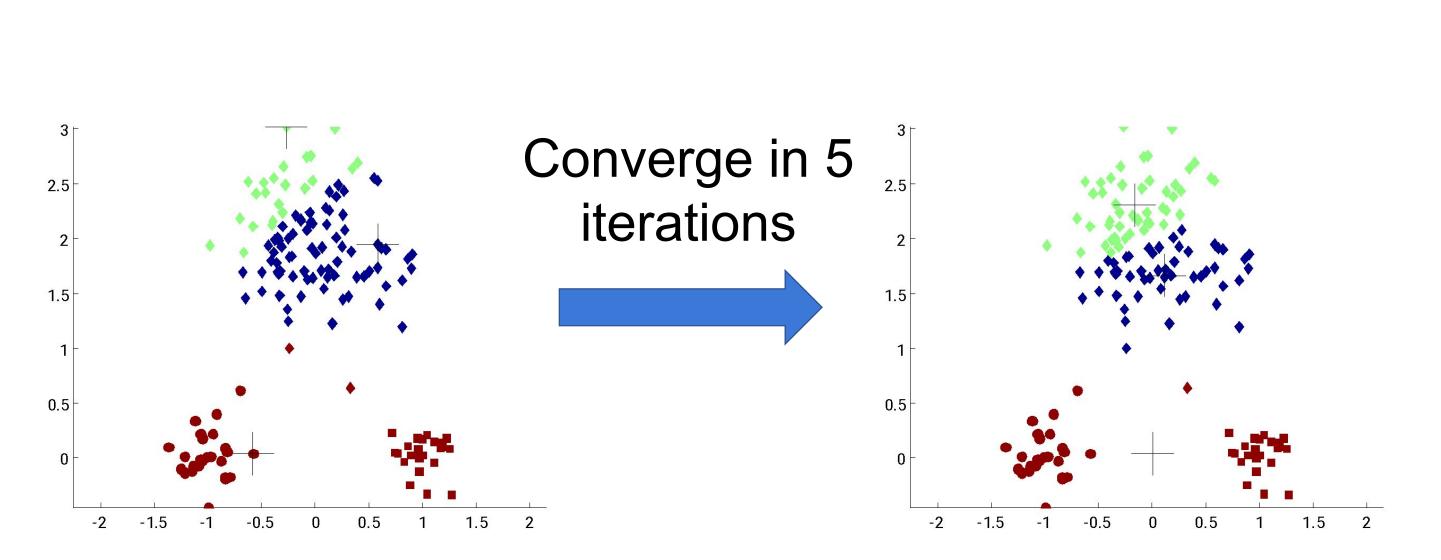
Strengths: 1. Simple and Efficient.

Weaknesses:

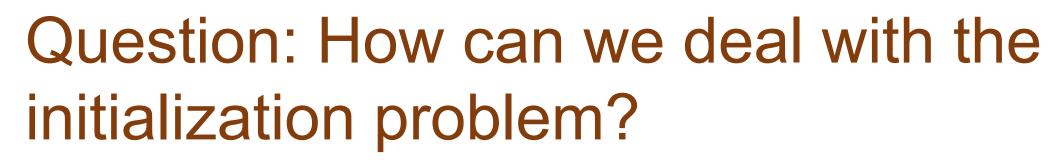
- 1. Clusters with different sizes and densities.
- 2. Non-spherical clusters.
- 3. Sensitive to initial centroids.

Question: How can we deal with the initialization problem?

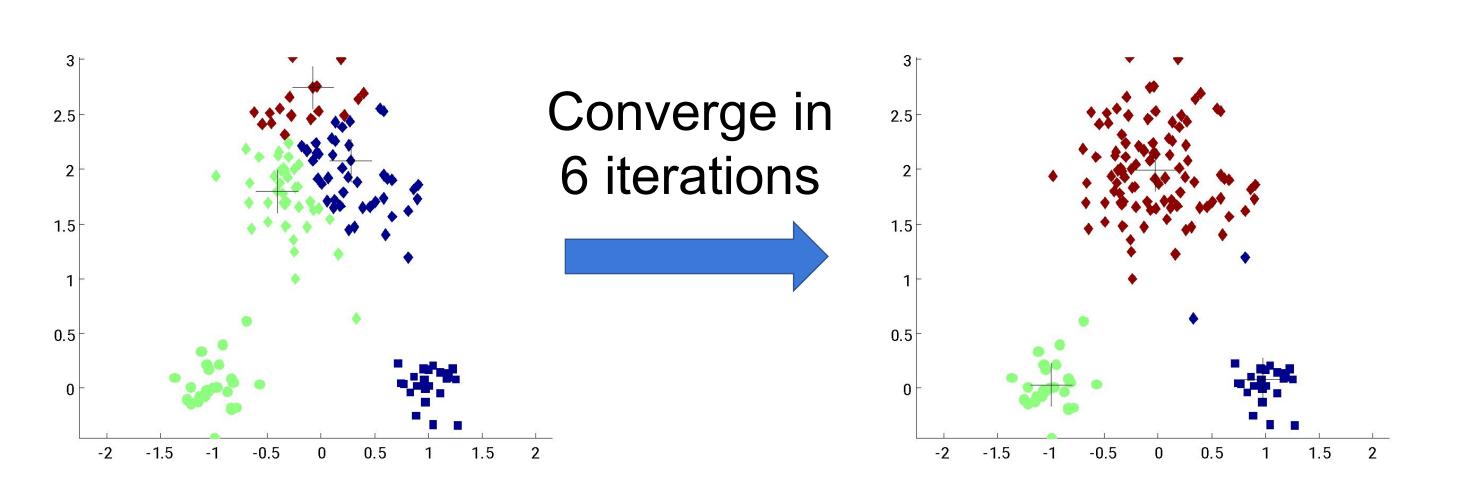


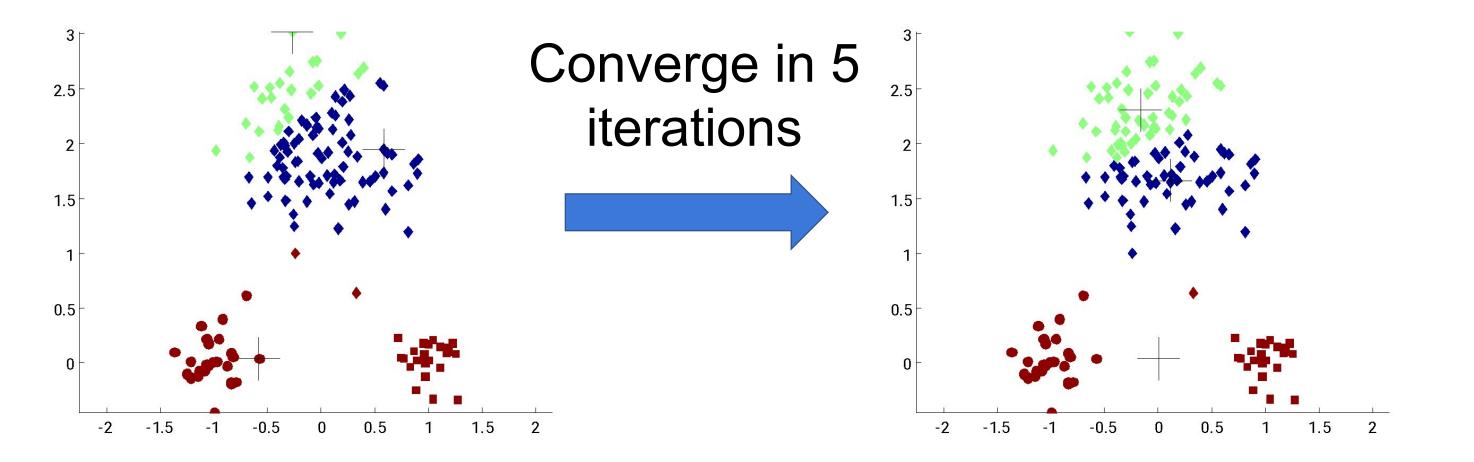


Yong Zhuang



1. Multi-start with best result.



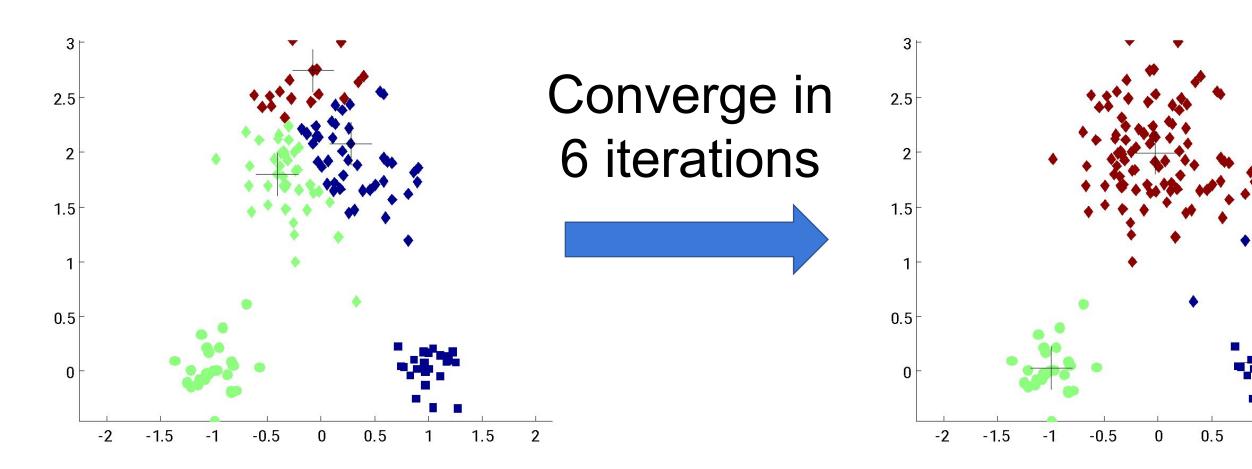


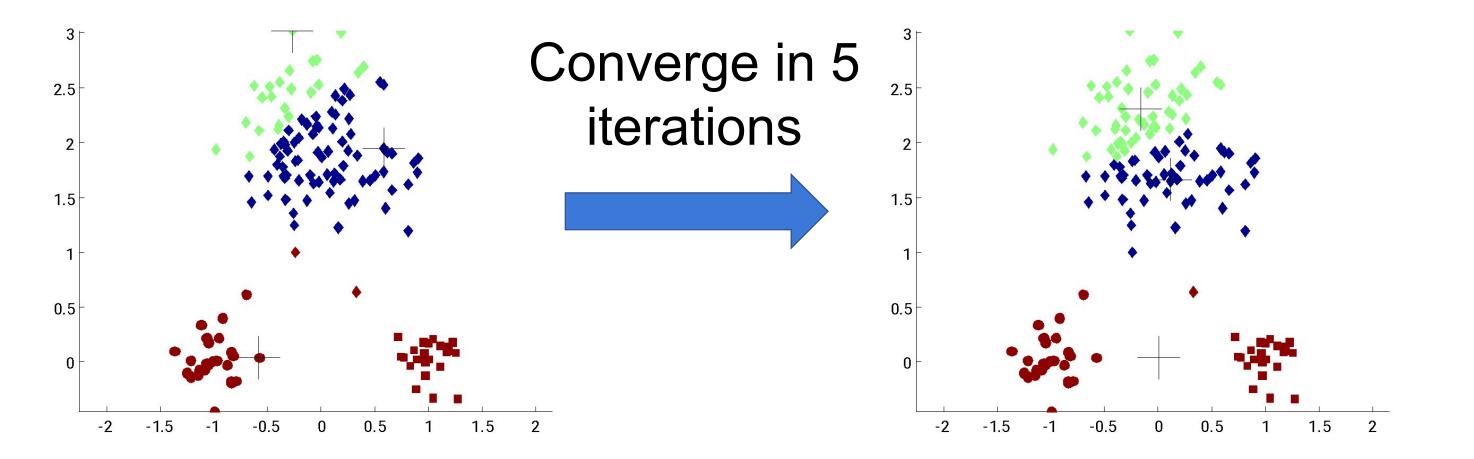
Yong Zhuang

Question: How can we deal with the initialization problem?

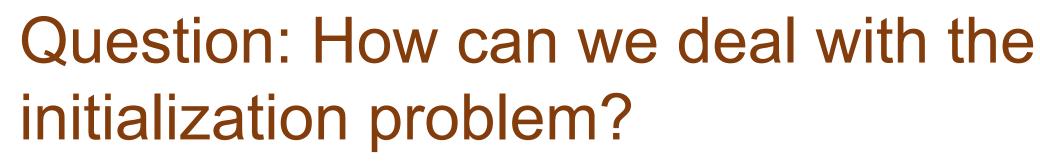
- 1. Multi-start with best result.
- 2. Heuristic for initial centers
 - selection: K-Means++

1.5

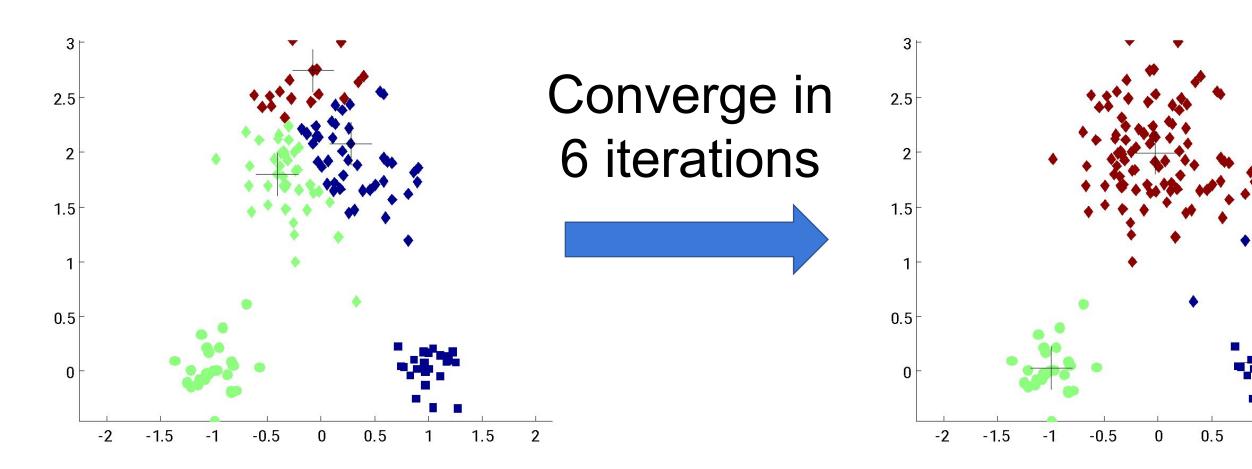


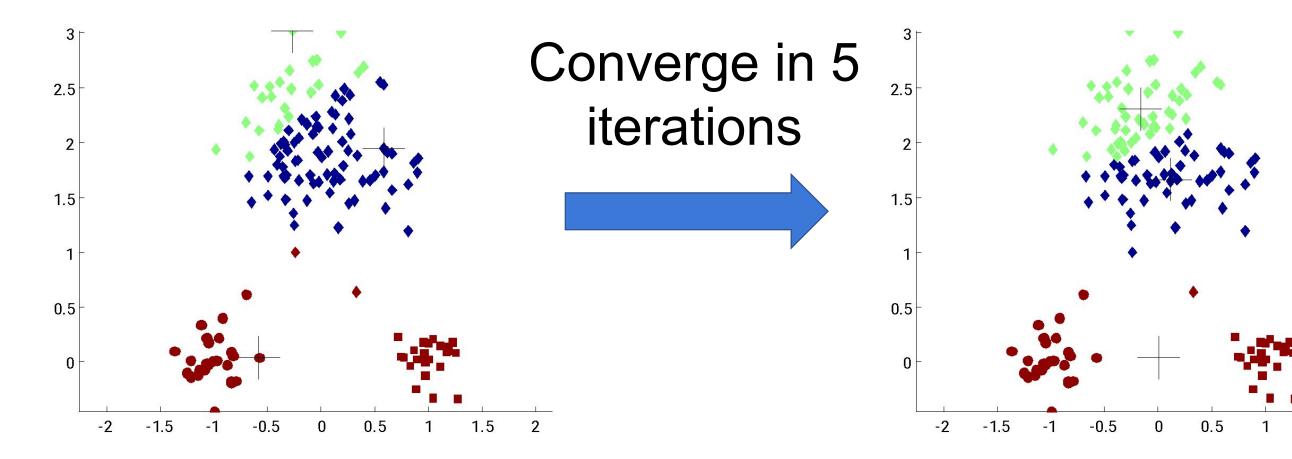


Yong Zhuang

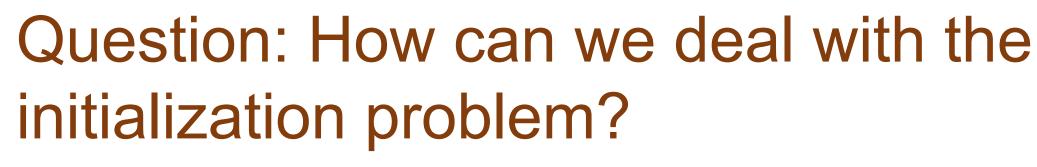


- 1. Multi-start with best result.
- 2. Heuristic for initial centers
 - selection: K-Means++
- 3. Algorithm invariant to initial selection: Bisecting K-Means





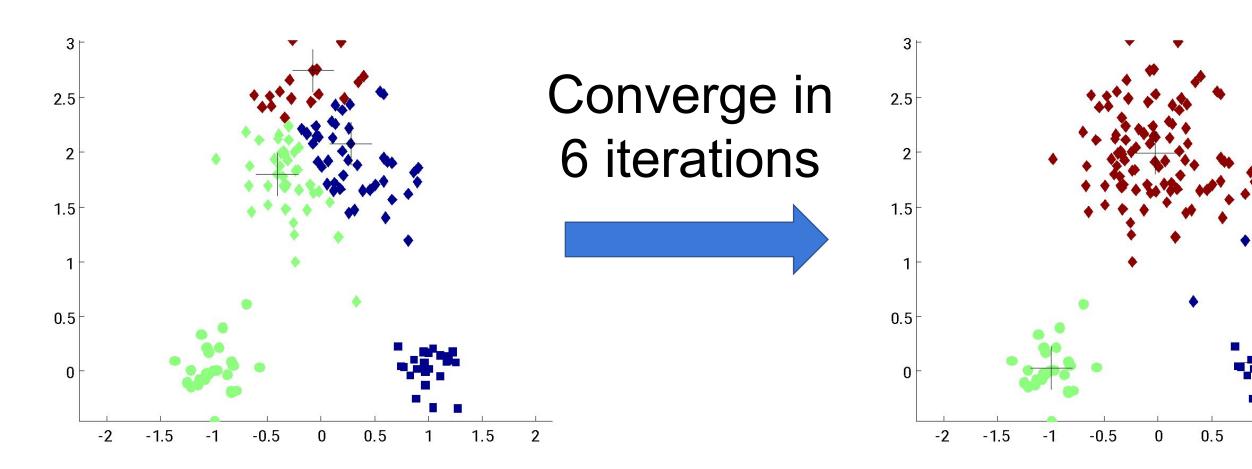
Yong Zhuang

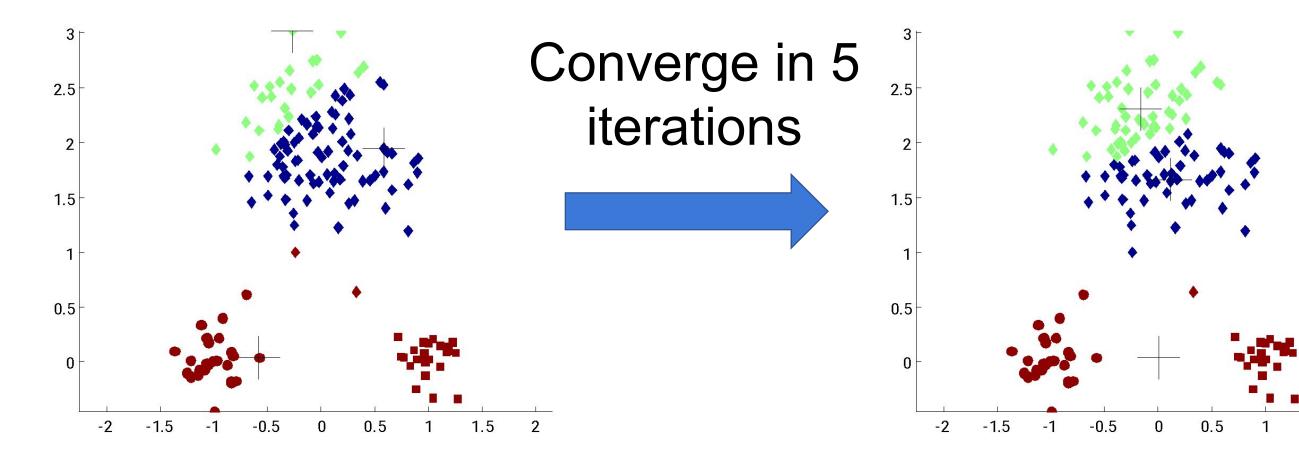


- 1. Multi-start with best result.
- 2. Heuristic for initial centers
 - selection: K-Means++
- 3. Algorithm invariant to initial
 - selection: Bisecting K-Means
- 4. Post processing on clusters

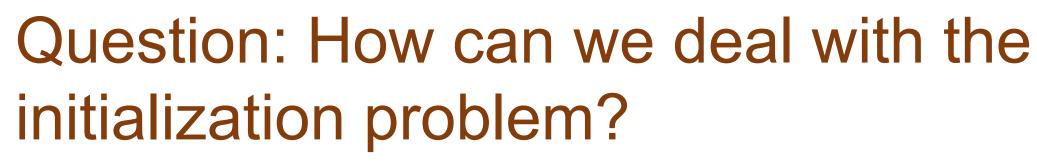
Knowledge Discovery & Data Mining – Clustering

1.5 2





Yong Zhuang



- 1. Multi-start with best result.
- 2. Heuristic for initial centers
 - selection: K-Means++
- 3. Algorithm invariant to initial
 - selection: Bisecting K-Means
- 4. Post processing on clusters
- 5. Global optimization

1.5 2

Outline

- Introduction to Clustering
- K-Means
 - K-Means Algorithm
 - Limitation of K-Means
 - K-Means Implementation
- Agglomerative Clustering

K-Means API

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

```
X, y = make_blobs(centers=4, random_state=1)
```

```
km = KMeans(n_clusters=5, random_state=0)
km.fit(X)
print(km.cluster_centers_.shape)
print(km.labels_.shape)
```

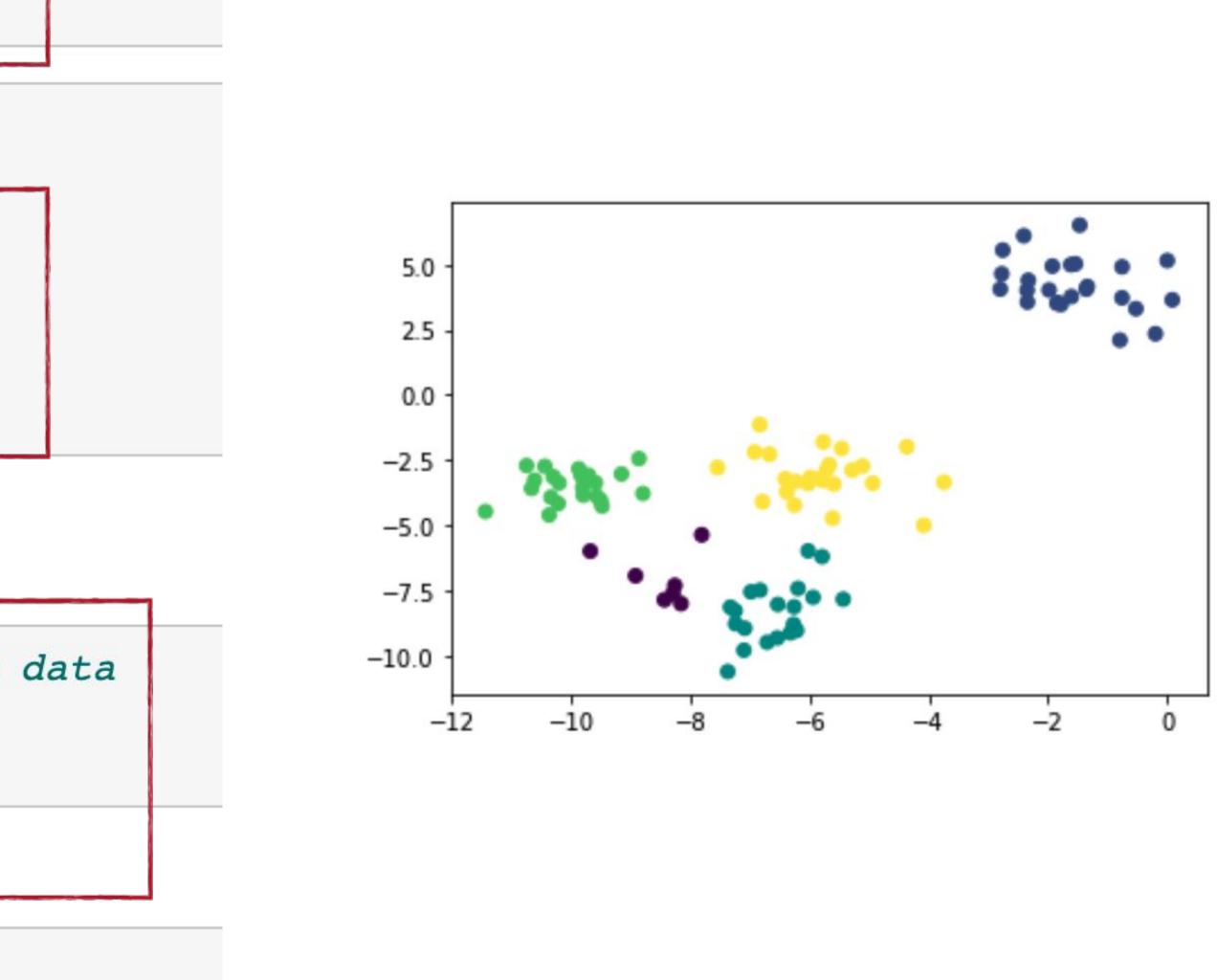
(5, 2) (100,)

predict is the same as labels_ on training data
but can be applied to new data
print(km.predict(X).shape)

(100,)

plt.scatter(X[:, 0], X[:, 1], c=km.labels_)

Yong Zhuang



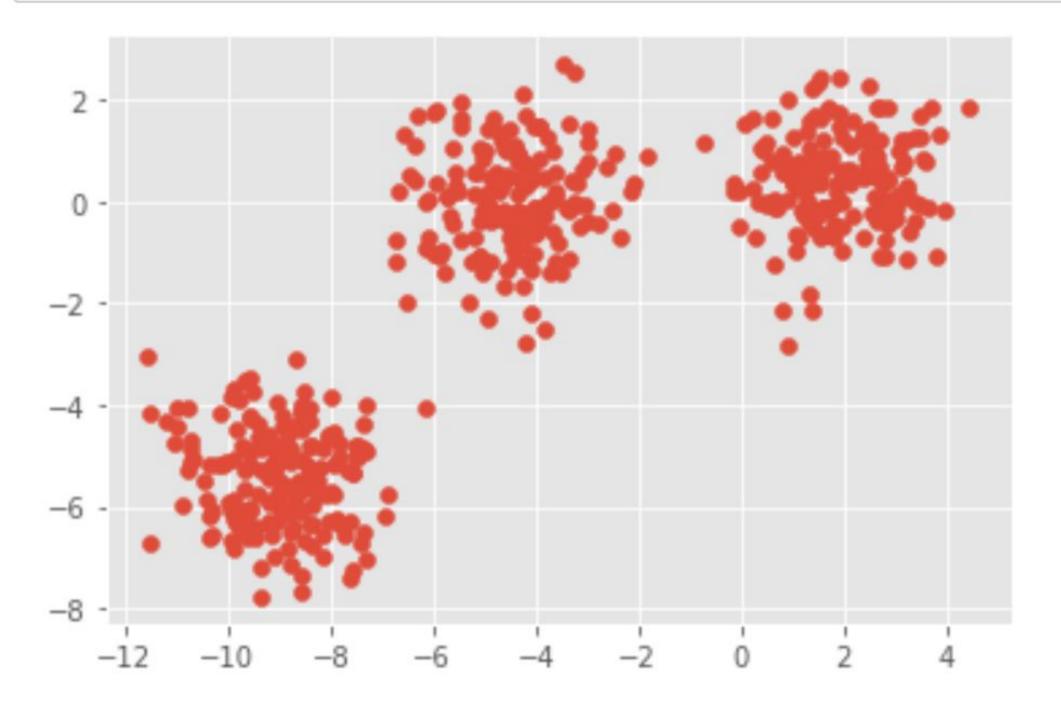
Initialization

- Random centers fast
- K-means++ (default): Greedily add 'furthest way' point
- By default K-means in sklearn does 10 random restarts with different initializations
- K-means++ initialization may take much longer than clustering

K-Means Application

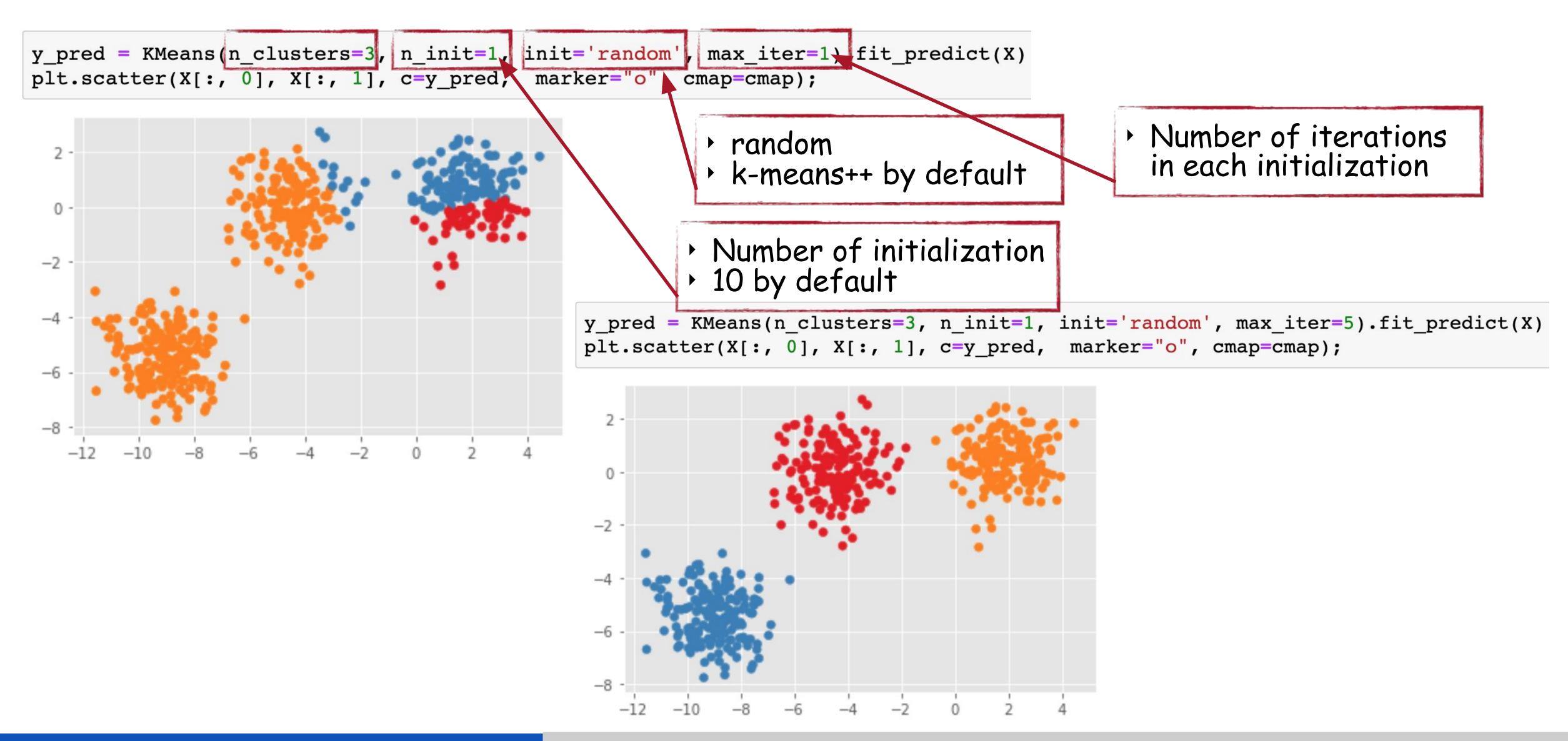
make blobs generates gaussian blobs, we create 3 blobs $n_{samples} = 500$ random state = 170X, y = make_blobs(n_samples=n_samples, centers=3, random_state=random_state) # plot data

plt.scatter(X[:, 0], X[:, 1], marker="o");



Yong Zhuang

K-Means Application



Yong Zhuang

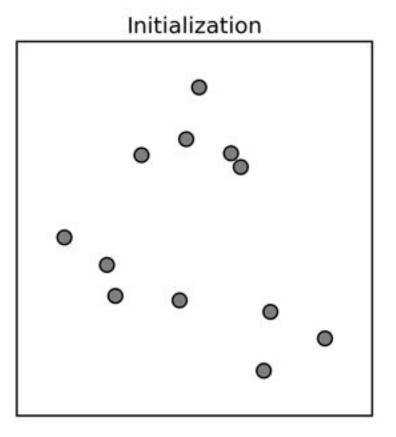
Knowledge Discovery & Data Mining – Clustering

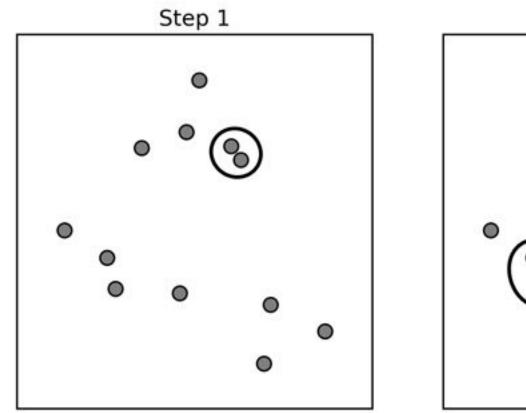
Outline

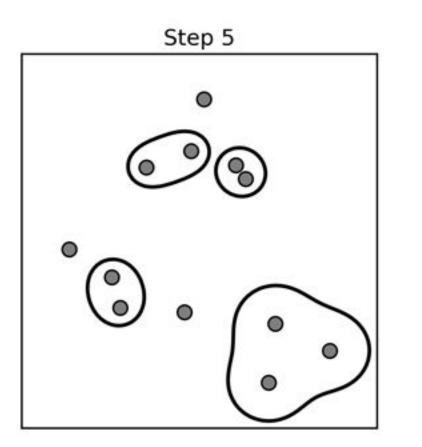
- Introduction to Clustering
- K-Means
 - K-Means Algorithm
 - Limitation of K-Means
 - K-Means Implementation
- Agglomerative Clustering

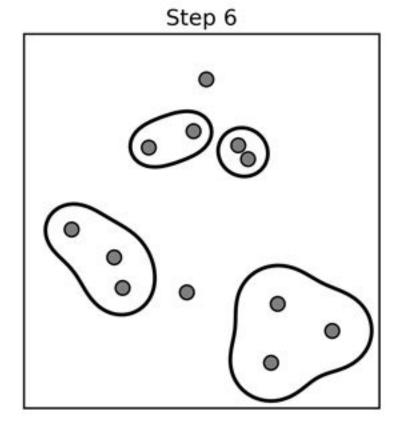
Agglomerative Clustering

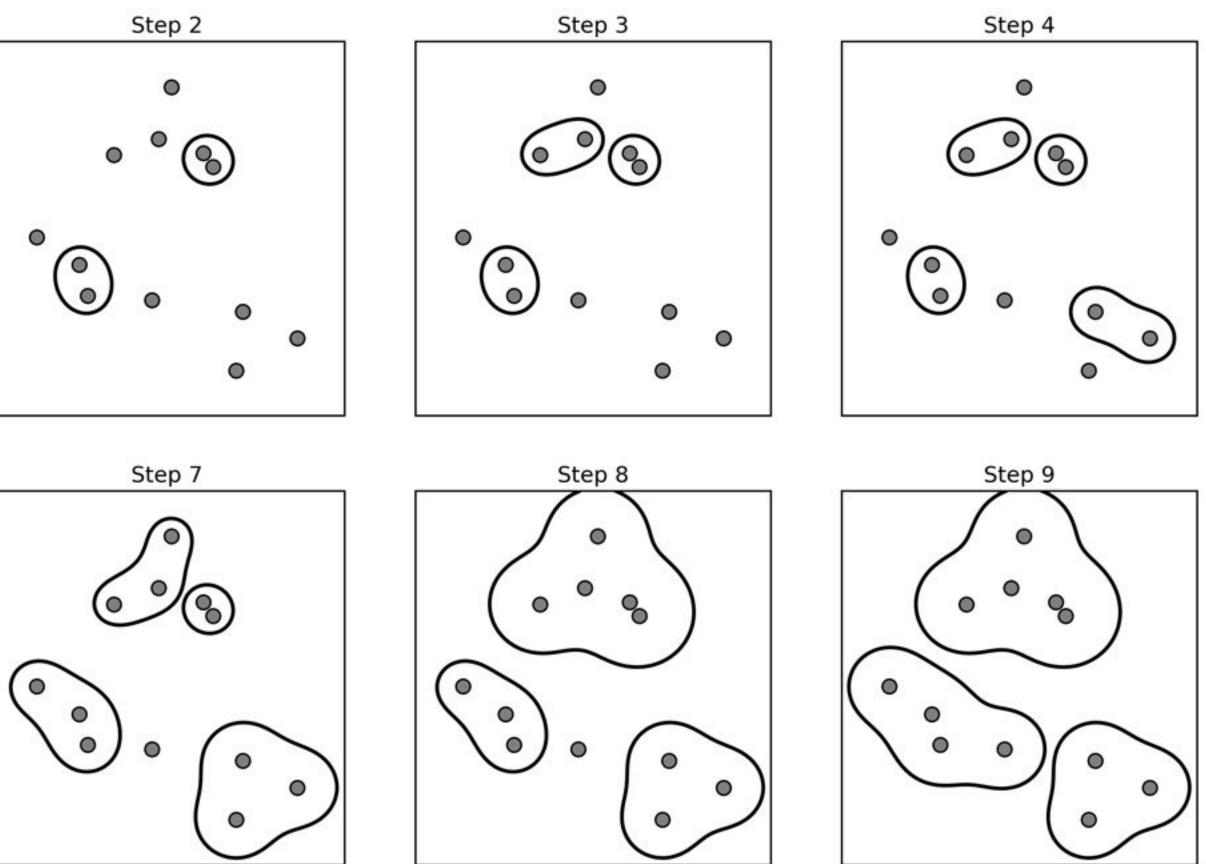
- Start with all points in their own cluster
- Greedily merge the two most similar clusters

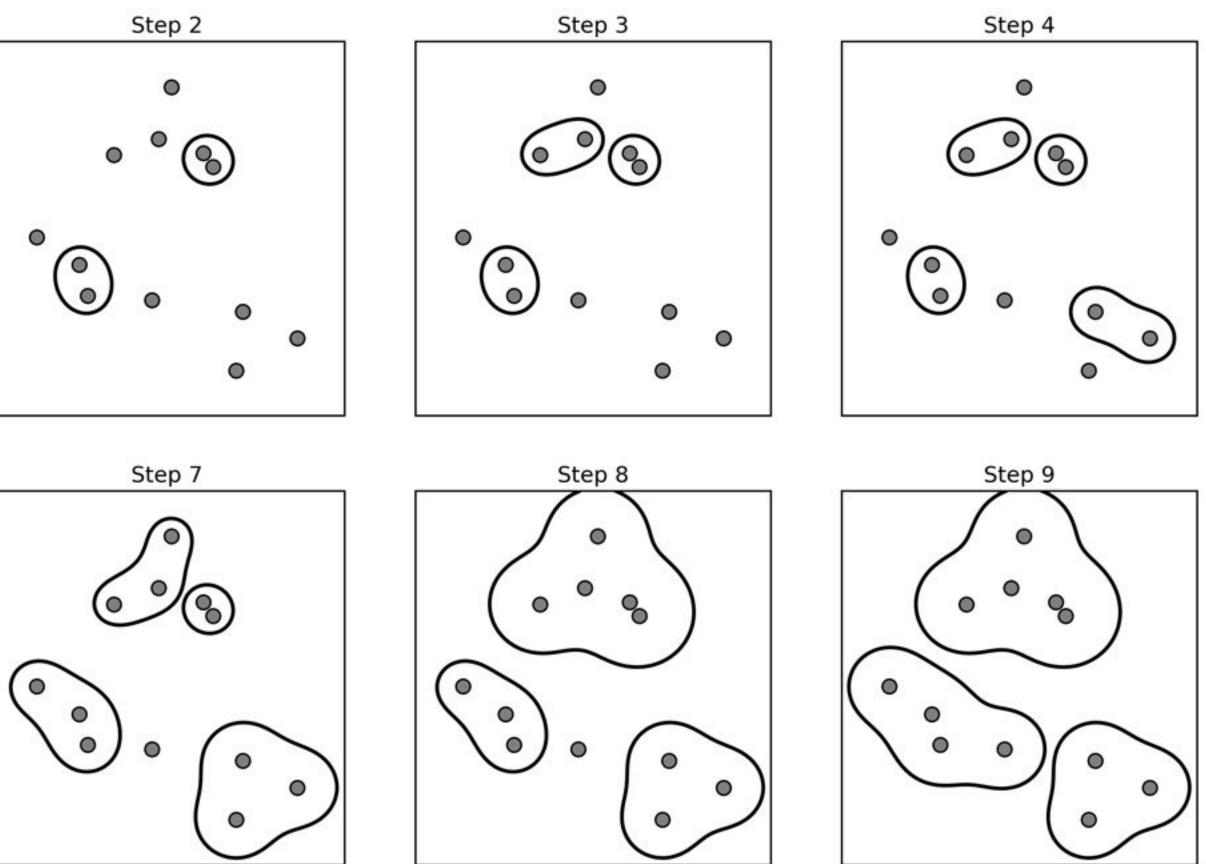






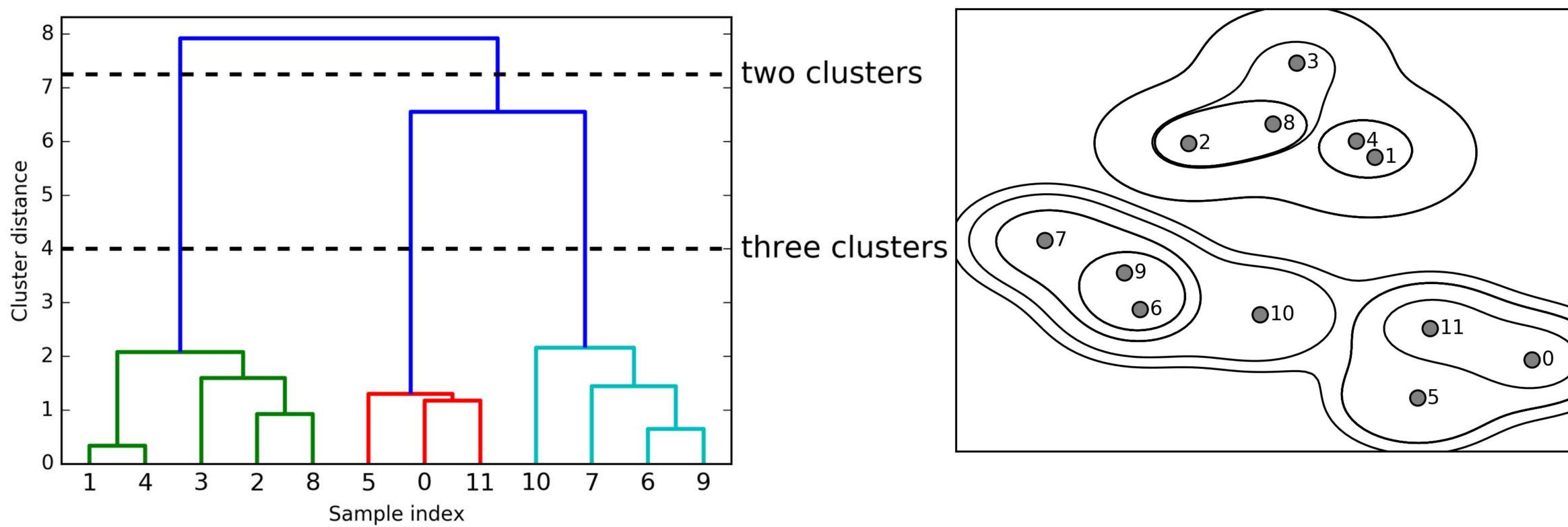


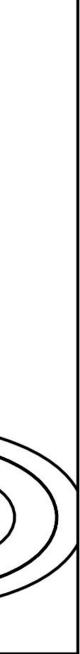




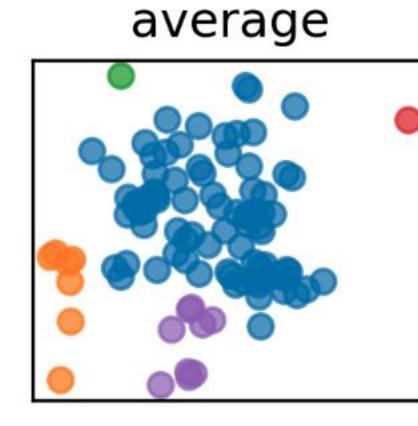
Yong Zhuang

Dendrograms

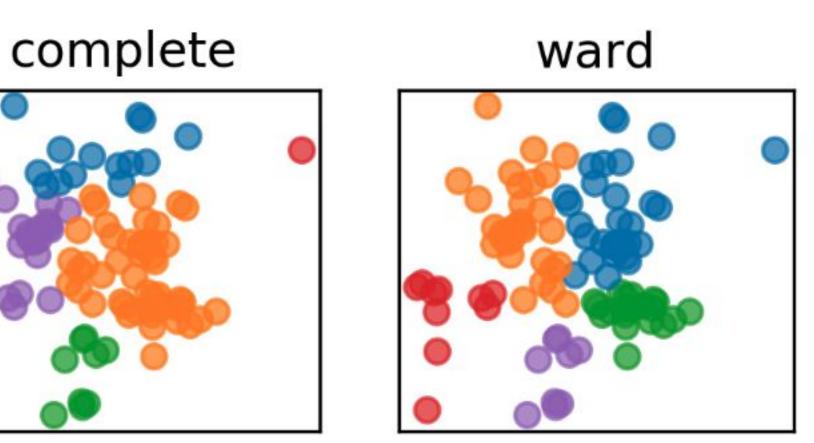




single

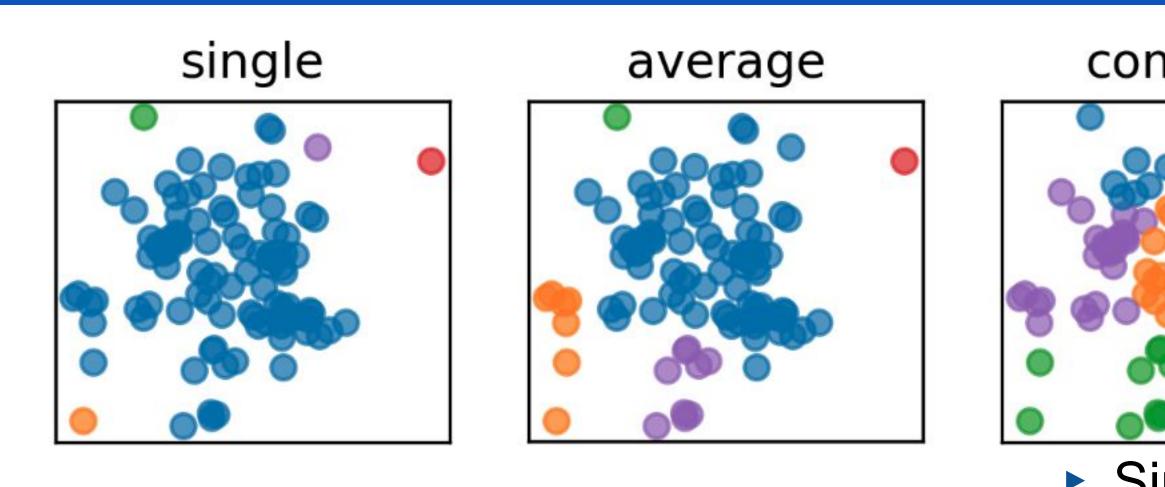


single: [96 1 1 1 1] average: [82 9 7 1 1] single : complete : [50 24 14 11 1] ward : [31 30 20 10 9]

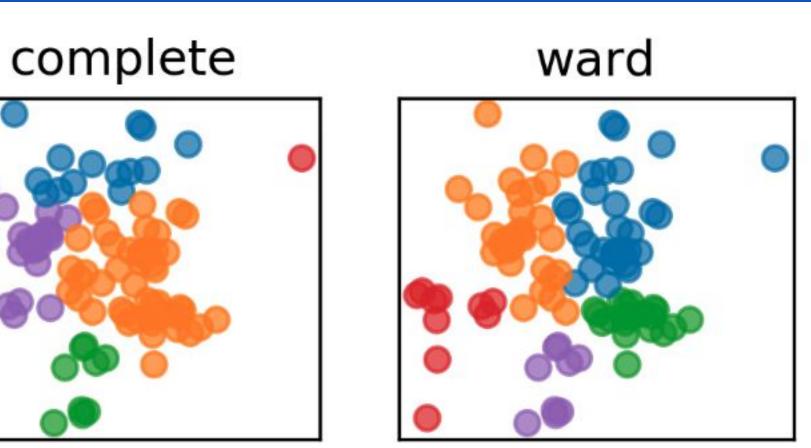


Single Linkage

Smallest minimum distance

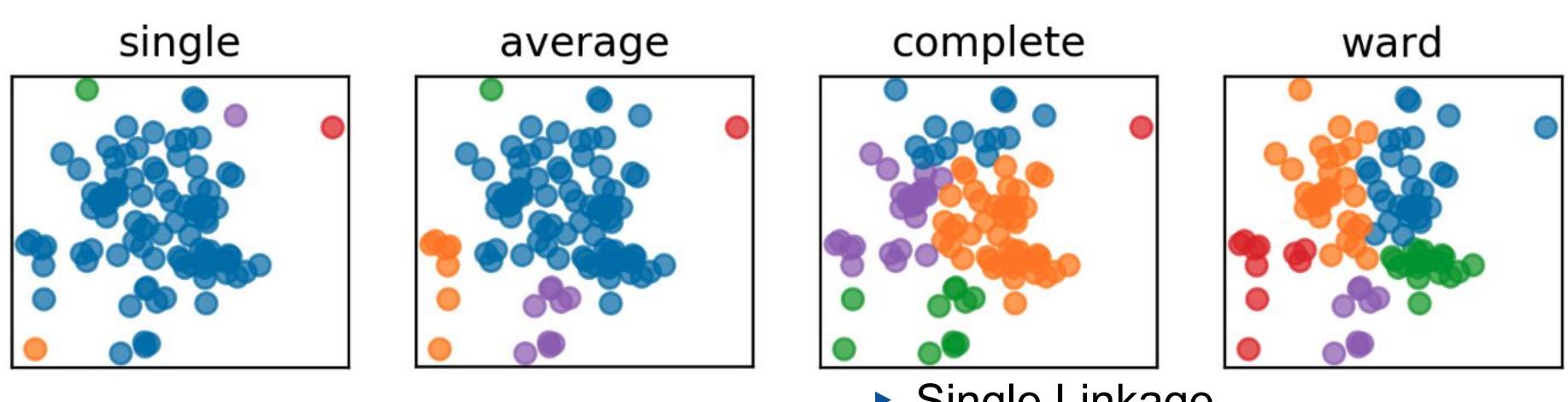


single : [96 1 1 1 1] average : [82 9 7 1 1] complete : [50 24 14 11 1] ward : [31 30 20 10 9]



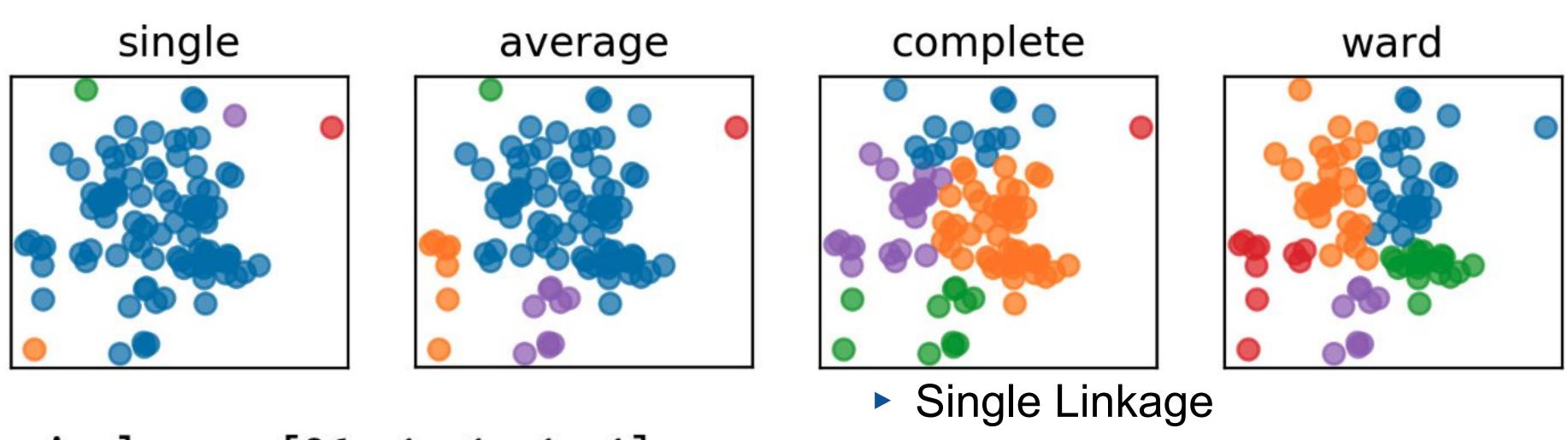
Single Linkage

- Smallest minimum distance
- Average Linkage
 - Smallest average distance between all pairs in the clusters



single : [96 1 1 1 1] average : [82 9 7 1 1] complete : [50 24 14 11 1] ward : [31 30 20 10 9] Single Linkage

- Smallest minimum distance
- Average Linkage
 - Smallest average distance between all pairs in the clusters
- Complete Linkage
 - Smallest maximum distance



single : [96 1 1 1 1] average : [82 9 7 1 1] complete : [50 24 14 11 1] single : [31 30 20 10 9] ward :

Yong Zhuang

- Smallest minimum distance
- Average Linkage
 - Smallest average distance between all pairs in the clusters
- Complete Linkage
 - Smallest maximum distance
- Ward (default in sklearn)
 - Smallest increase in within-cluster variance
 - Leads to more equally sized clusters.

Summary

- KMeans
 - Classic, simple and efficient.
 - Algorithm with iterative update of cluster centers.
 - Failed on cluster with non-globularity, various density and size.
 - Issues with the initialization of centers
- Agglomerative
 - Do not need to specify the number of clusters
 - It is sensitive to noise and outliers
 - Time and space complexity is high so not suitable for large dataset