yong.zhuang@gvsu.edu

Yong Zhuang

- Knowledge Discovery & Data Mining - Data Preprocessing -**Data Transformation II**
 - Instructor: Yong Zhuang

Based on the original version by Professor Jiliang Tang

Outline

- Data Transformation
 - **Robust Normalization** 0
 - 12 normalization Ο
 - Handling Categorical Features 0
 - Ordinal Encoding
 - One-Hot Encoding for Nominal
 - Encoding Image Data 0
 - Encoding Text Data: Ο
 - Common Approach Ο
 - Bag of Words(BoW) Ο
 - Term Frequency Inverse Document Frequency (TF-IDF), Ο
 - Word Embedding: Ο
 - Word2Vec Continuous Bag of Words Model Skip-Gram Model

Yong Zhuang

Robust Normalization

Robust normalization scales the original data using the median and the interquartile range (IQR), which are less sensitive to outliers.

attribute A. Robust normalization maps a value v_i , of A to v'_i by computing:

$v'_i =$

When to Use:

- Ideal when your data contains outliers or anomalies that could skew statistical measures like the mean and standard deviation.
- Helps bring all features to the same scale without being influenced by extreme values.

Suppose that Median_A is the median value and IQR_A is the interquartile range of an

$$\frac{v_i - median_A}{IQR_A}$$

Robust Normalization

Example. Suppose that the quartiles of the values for the attribute income are as follows:

- First Quartile (Q1): \$36,000
- Median (Q2): \$49,600
- Third Quartile (Q3): \$60,000

Using robust normalization, a value of \$73,600 for income is transformed to:

$$v'_i = rac{v_i - median_A}{IQR_A}$$

Robust Normalization

Example. Suppose that the quartiles of the values for the attribute income are as follows:

- First Quartile (Q1): \$36,000
- Median (Q2): \$49,600
- Third Quartile (Q3): \$60,000

Using robust normalization, a value of \$73,600 for income is transformed to:

$$v_i' = rac{\$73,600 - \$49,600}{\$24,000} = 1$$

$$v'_i = rac{v_i - median_A}{IQR_A}$$

L2 Normalization

L2 Normalization scales the original data such that each feature vector has a Euclidean length of 1, effectively projecting the data onto the unit circle or sphere.

Suppose that x_i is a feature vector. L2 Normalization maps x_i to x'_i by computing:

Where $\|\mathbf{x}_i\|_2$ is the Euclidean (L2) norm of x

. x_{ij} represents the j-th element of the feature vector x_i . . n is the number of features in the vector

$$= \frac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2}$$

$$x_i$$
, calculated as: $\|\mathbf{x}_i\|_2 = \sqrt{\sum_{j=1}^n x_{ij}^2}$

L2 Normalization

Example. Suppose that the feature vector can be transferred to X' =

Example. Suppose that the feature vector X = [3, 4, 0], so using L2 normalization, X

Knowledge Discovery & Data Mining

L2 Normalization

Example. Suppose that the feature vector X = [3, 4, 0], so using L2 normalization, X can be transferred to X' =

$$\mathbf{x}'_i = rac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2} \qquad \|\mathbf{x}_i\|_2 = \sqrt{\sum_{j=1}^n x_{ij}^2}$$

$\mathbf{x}'_i = rac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2} = \left|rac{3}{5}, rac{4}{5}, rac{0}{5} ight| = [0.6, 0.8, 0]$

Ordinal Encoding for Ordinal

where the categories have a meaningful order or ranking. In this method, each unique

category is assigned an integer based on its rank or order.

Education	Education_encoded
High School	1
Bachelor's	2
PhD	4
Master's	3
Bachelor's	2

Ordinal Encoding is a technique used to convert categorical data into numerical values

One-Hot Encoding for Nominal

One-Hot Encoding is a technique used to convert nominal (categorical) data into

a value of 1 indicates the presence of the category and 0 indicates its absence.

- Converts a feature with n values to n binary features.
- Adds a new 0/1 feature for every category, having 1 (hot) if the sample has that category.
- Can significantly increase dimensionality if a feature has many unique categories, potentially leading to sparse data.
- Requires handling new categories in the test set that were not seen during training.

- numerical form. This method transforms each category into a new binary column, where

One-Hot Encoding for Nominal

Color	Color_Red
Red	1
Blue	0
Green	0
Red	1

Color_Blue	Color_Green
0	0
1	0
0	1
0	0

Knowledge Discovery & Data Mining

Encoding Image Data

When working with image data, pixel values are usually represented as integers in the range 0–255, indicating grayscale intensity levels. To properly preprocess the data for a neural network, follow these steps:

- Convert the image data type to float32 to ensure compatibility with the neural network's computations.
- 0–1. This improves model performance by standardizing the input.

Normalize the pixel values by dividing each value by 255, scaling them to a range of

Knowledge Discovery & Data Mining

Encoding Text Data

Text encoding is the process of transforming text data into numerical form so that predictive algorithms can process it. One common approach is to represent text as sequences of word indexes:

- Tokenization
- Assigning Unique Indexes to Words
- Representing Each Text as a List of Word Indexes
- Handling Varying Lengths
- Transformation into Float32 Tensors: One-Hot Encoding

Knowledge Discovery & Data Mining

Common approach

doc1: "The cat sat on the mat."

[The, cat, sat, on, the, mat]

Vocabulary	Index
the	1
cat	2
sat	3
on	4
mat	5
dog	6
fell	7
asleep	8

doc1	
1	[1, 0,
2	[0, 1,
3	[0, 0,
4	[0, 0,
1	[1, 0,
5	[0, 0,

doc2: "The dog fell asleep."

Tokenize

[The, dog, fell, asleep]

0, 0, 0, 0, 0, 0] 0, 0, 0, 0, 0, 0] 1, 0, 0, 0, 0, 0] 0, 1, 0, 0, 0, 0] 0, 0, 0, 0, 0, 0] 0, 0, 1, 0, 0, 0]

doc2	
1	[1, 0, 0, 0, 0, 0, 0, 0]
6	[0, 0, 0, 0, 0, 1, 0, 0]
7	[0, 0, 0, 0, 0, 0, 1, 0]
8	[0, 0, 0, 0, 0, 0, 0, 0]
0	[0, 0, 0, 0, 0, 0, 0, 0]
0	[0, 0, 0, 0, 0, 0, 0, 0]

Bag of Words(BoW)

doc1: "The cat sat on the mat."

[The, cat, sat, on, the, mat]

Vocabulary doc1 2 the cat 1 sat 1 on 1 mat 0 dog 0 log

Simple, easy, and explainable.

Yong Zhuang

doc2: "The dog sat on the log."

Tokenize

[The, dog, sat, on, the, log]

doc2
2
0
1
1
0
1
1

Bag of Words(BoW)

Limitations:

Compound Word: AI, New York Word Correlation: Cake, Baking Polymorphous (Multiple Meanings): "Python" (Programming) vs. "python" (Animal) Word Order: [Flight, GR, Chicago, from, to] (from GR to Chicago? or from Chicago to GR?) Sparsity: With a large vocabulary, each vector contains many zeros (sparse). **Possible Solutions and Enhancements** Use N-grams: phrase, treating common phrases ("New York") as a single unit. Stemming: Reduces words to their root form: coding, coded, codes, code => code

relevance within a specific document.

• Term Frequency (TF) Measures how often a word appears in a specific document. The higher the frequency of the term in the document, the higher its TF score or weight.

$$ext{TF}(t, d) = rac{ ext{Number of ti}}{ ext{Total nu}}$$

that appear in many documents (e.g., "the", "some", etc.) are less important and receive a lower score.

$$IDF(t) = log\left(\frac{To}{Number}\right)$$

TF-IDF is used to calculate the importance of a word in a document relative to a collection (or corpus) of documents. It provides a score (or weight) associated with each word to indicate its

- imes term t occurs in document dmber of terms in document d
- Inverse Document Frequency (IDF) Measures how common or rare a word is across the entire corpus. Words

tal number of documents of documents containing term t /

Knowledge Discovery & Data Mining

- to that document.

• High TF-IDF: A word that occurs frequently in a document but rarely across the corpus, indicating high relevance

• Low TF-IDF: A word that occurs across many documents, making it less useful for identifying relevant content.

 $TF-IDF(t, d) = TF(t, d) \times IDF(t)$

doc1: "The cat sat on the mat."

[The, cat, sat, on, the, mat]

Yong Zhuang

doc2: "The dog sat on the log."

Tokenize

[The, dog, sat, on, the, log]

 $TF(t, d) = \frac{\text{Number of times term } t \text{ occurs in document } d}{\text{Total number of terms in document } d}$

 $IDF(t) = \log\left(\frac{\text{Total number of documents}}{\text{Number of documents containing term }t}\right)$

 $\text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)$

(using the base 10 logarithm)

doc1: "The cat sat on the mat."

[The, cat, sat, on, the, mat]

Vocabulary	TF_doc1	TF_doc2
the	2/6 = 0.333	2/6 = 0.333
cat	1/6 = 0.167	0
sat	1/6 = 0.167	1/6 = 0.167
on	1/6 = 0.167	1/6 = 0.167
mat	1/6 = 0.167	0
dog	0	1/6 = 0.167
log	0	1/6 = 0.167

Word Embedding: Word2Vec

Continuous Bag of Words Model

Input is average of surrounding words: $x_i = ("plots" + "made" +$ "package" + "R") / 4

plots are made with the <u>ggplot2</u> package in R

Target is center word: y i = "ggplot2"

Word Embedding: Word2Vec

Skip-Gram Model

plots are made with the <u>ggplot2</u> package in R

Input is center word: x i = "ggplot2"

Target is average of surrounding words: $y_i = ("plots" + "made")$ + "package" + "R") / 4

Summary

Data Transformation

- Robust Normalization
- I2 normalization
- Handling Categorical Features
 - Ordinal Encoding 0
 - **One-Hot Encoding for Nominal** 0
- Encoding Image Data
- Encoding Text Data:
- Common Approach
- Bag of Words(BoW)
- Term Frequency Inverse Document Frequency (TF-IDF),
- Word Embedding:
 - Word2Vec Continuous Bag of Words Model Skip-Gram Model 0

